Skip to main content
Log in

On the quantitative impact of the Schechter-Valle theorem

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We evaluate the Schechter-Valle (Black Box) theorem quantitatively by considering the most general Lorentz invariant Lagrangian consisting of point-like operators for neutrinoless double beta decay. It is well known that the Black Box operators induce Majorana neutrino masses at four-loop level. This warrants the statement that an observation of neutrinoless double beta decay guarantees the Majorana nature of neutrinos. We calculate these radiatively generated masses and find that they are many orders of magnitude smaller than the observed neutrino masses and splittings. Thus, some lepton number violating New Physics (which may at tree-level not be related to neutrino masses) may induce Black Box operators which can explain an observed rate of neutrinoless double beta decay. Although these operators guarantee finite Majorana neutrino masses, the smallness of the Black Box contributions implies that other neutrino mass terms (Dirac or Majorana) must exist. If neutrino masses have a significant Majorana contribution then this will become the dominant part of the Black Box operator. However, neutrinos might also be predominantly Dirac particles, while other lepton number violating New Physics dominates neutrinoless double beta decay. Translating an observed rate of neutrinoless double beta decay into neutrino masses would then be completely misleading. Although the principal statement of the Schechter-Valle theorem remains valid, we conclude that the Black Box diagram itself generates radiatively only mass terms which are many orders of magnitude too small to explain neutrino masses. Therefore, other operators must give the leading contributions to neutrino masses, which could be of Dirac or Majorana nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [SPIRES].

    Article  ADS  Google Scholar 

  2. SNO collaboration, Q.R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [SPIRES].

    Article  ADS  Google Scholar 

  3. KamLAND collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [SPIRES].

    Article  ADS  Google Scholar 

  4. IGEX collaboration, C.E. Aalseth et al., The Igex 76 Ge neutrinoless double-beta decay experiment: prospects for next generation experiments, Phys. Rev. D 65 (2002) 092007 [hep-ex/0202026] [SPIRES].

    ADS  Google Scholar 

  5. H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, A. Dietz and O. Chkvorets, Search for neutrinoless double beta decay with enriched 76 Ge in Gran Sasso 1990–2003, Phys. Lett. B 586 (2004) 198 [hep-ph/0404088] [SPIRES].

    ADS  Google Scholar 

  6. CUORICINO collaboration, C. Arnaboldi et al., Results from a search for the 0νββ-decay of 130 Te, Phys. Rev. C 78 (2008) 035502 [arXiv:0802.3439] [SPIRES].

    ADS  Google Scholar 

  7. NEMO collaboration, J. Argyriades et al., Measurement of the double beta decay half-life of 150-Nd and search for neutrinoless decay modes with the NEMO-3 detector, Phys. Rev. C 80 (2009) 032501 [arXiv:0810.0248] [SPIRES].

    ADS  Google Scholar 

  8. GERDA collaboration, S. Schonert et al., The GERmanium Detector Array (GERDA) for the search of neutrinoless ββ decays of Ge-76 at LNGS, Nucl. Phys. Proc. Suppl. 145 (2005) 242 [SPIRES].

    Article  ADS  Google Scholar 

  9. J. Schechter and J.W.F. Valle, Neutrinoless double-beta decay in SU(2) × U(1) theories, Phys. Rev. D 25 (1982) 2951 [SPIRES].

    ADS  Google Scholar 

  10. E. Takasugi, Can the neutrinoless double beta decay take place in the case of Dirac neutrinos?, Phys. Lett. B 149 (1984) 372 [SPIRES].

    ADS  Google Scholar 

  11. J.F. Nieves, Dirac and pseudo-Dirac neutrinos and neutrinoless double beta decay, Phys. Lett. B 147 (1984) 375 [SPIRES].

    ADS  Google Scholar 

  12. M. Hirsch, S. Kovalenko and I. Schmidt, Extended Black Box theorem for lepton number and flavor violating processes, Phys. Lett. B 642 (2006) 106 [hep-ph/0608207] [SPIRES].

    ADS  Google Scholar 

  13. M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, R-parity-conserving supersymmetry, neutrino mass and neutrinoless double beta decay, Phys. Rev. D 57 (1998) 1947 [hep-ph/9707207] [SPIRES].

    ADS  Google Scholar 

  14. M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, B-L violating masses in softly broken supersymmetry, Phys. Lett. B 398 (1997) 311 [hep-ph/9701253] [SPIRES].

    ADS  Google Scholar 

  15. H. Pas, M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, A superformula for neutrinoless double beta decay. II: the short range part, Phys. Lett. B 498 (2001) 35 [hep-ph/0008182] [SPIRES].

    ADS  Google Scholar 

  16. G. Prezeau, M. Ramsey-Musolf and P. Vogel, Neutrinoless double beta decay and effective field theory, Phys. Rev. D 68 (2003) 034016 [hep-ph/0303205] [SPIRES].

    ADS  Google Scholar 

  17. F. Simkovic, J. Vergados and A. Faessler, Few active mechanisms of the neutrinoless double beta-decay and effective mass of Majorana neutrinos, Phys. Rev. D 82 (2010) 113015 [arXiv:1006.0571] [SPIRES].

    ADS  Google Scholar 

  18. F. Simkovic, private communication.

  19. J. Bergstrom, A. Merle and T. Ohlsson, Constraining new physics with a positive or negative signal of neutrino-less double beta decay, JHEP 05 (2011) 122 [arXiv:1103.3015] [SPIRES].

    Article  ADS  Google Scholar 

  20. J. van der Bij and M.J.G. Veltman, Two loop large Higgs mass correction to the ρ parameter, Nucl. Phys. B 231 (1984) 205 [SPIRES].

    ADS  Google Scholar 

  21. A. Ghinculov and J.J. van der Bij, Massive two loop diagrams: the Higgs propagator, Nucl. Phys. B 436 (1995) 30 [hep-ph/9405418] [SPIRES].

    Article  ADS  Google Scholar 

  22. A. Ghinculov and Y.-P. Yao, Massive two-loop integrals in renormalizable theories, Nucl. Phys. B 516 (1998) 385 [hep-ph/9702266] [SPIRES].

    Article  ADS  Google Scholar 

  23. R. Mertig and R. Scharf, TARCER: a Mathematica program for the reduction of two-loop propagator integrals, Comput. Phys. Commun. 111 (1998) 265 [hep-ph/9801383] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  24. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  25. V. Koch, Introduction to chiral symmetry, nucl-th/9512029 [SPIRES].

  26. G. Bhattacharyya, H.V. Klapdor-Kleingrothaus, H. Pas and A. Pilaftsis, Neutrinoless double beta decay from singlet neutrinos in extra dimensions, Phys. Rev. D 67 (2003) 113001 [hep-ph/0212169] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Merle.

Additional information

ArXiv ePrint: 1105.0901

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duerr, M., Lindner, M. & Merle, A. On the quantitative impact of the Schechter-Valle theorem. J. High Energ. Phys. 2011, 91 (2011). https://doi.org/10.1007/JHEP06(2011)091

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)091

Keywords

Navigation