Skip to main content
Log in

Generalized geometry and M theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We reformulate the Hamiltonian form of bosonic eleven dimensional supergravity in terms of an object that unifies the three-form and the metric. For the case of four spatial dimensions, the duality group is manifest and the metric and C-field are on an equal footing even though no dimensional reduction is required for our results to hold. One may also describe our results using the generalized geometry that emerges from membrane duality. The relationship between the twisted Courant algebra and the gauge symmetries of eleven dimensional supergravity are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Julia, Group disintegrations, in Superspace and supergravity: proceedings of the Nuffield Workshop, Cambridge 1980, S.W. Hawking and M. Rocek eds., Cambridge University Press, Cambridge U.K. (1981).

    Google Scholar 

  2. B. Julia, Gravity, supergravities and integrable systems, in Group Theoretical Methods in Physics: Proceedings, Istanbul, Turkey 1982, M. Serdaroglu and E. Inonu eds., Spinger, U.S.A. (1983).

    Google Scholar 

  3. J. Thierry-Mieg and B. Morel, Superalgebras in exceptional gravity, in Superspace and supergravity: proceedings of the Nuffield Workshop, Cambridge 1980, S.W. Hawking and M. Rocek eds., Cambridge University Press, Cambridge U.K. (1981).

    Google Scholar 

  4. E. Cremmer, Supergravities in 5 dimensions, in Supergravities in diverse dimensions, volume 1, A. Salam and E. Sezgin, World Scientific, Singapore (1989).

    Google Scholar 

  5. G.W. Gibbons and S.W. Hawking, Classification of gravitational instanton symmetries, Commun. Math. Phys. 66 (1979) 291 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. B. de Wit and H. Nicolai, D = 11 supergravity with local SU(8) invariance, Nucl. Phys. B 274 (1986) 363 [SPIRES].

    Article  ADS  Google Scholar 

  7. H. Nicolai, D = 11 supergravity with local SO(16) invariance, Phys. Lett. B 187 (1987) 316 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. K. Koepsell, H. Nicolai and H. Samtleben, An exceptional geometry for D = 11 supergravity?, Class. Quant. Grav. 17 (2000) 3689 [hep-th/0006034] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. B. de Wit and H. Nicolai, Hidden symmetries, central charges and all that, Class. Quant. Grav. 18 (2001) 3095 [hep-th/0011239] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  10. P. West, Generalised space-time and duality, Phys. Lett. B 693 (2010) 373 [arXiv:1006.0893] [SPIRES].

    ADS  Google Scholar 

  11. P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  12. P.C. West, E 11 , SL(32) and central charges, Phys. Lett. B 575 (2003) 333 [hep-th/0307098] [SPIRES].

    ADS  Google Scholar 

  13. P.C. West, E 11 origin of brane charges and U-duality multiplets, JHEP 08 (2004) 052 [hep-th/0406150] [SPIRES].

    Article  ADS  Google Scholar 

  14. A. Kleinschmidt and P.C. West, Representations of G+++ and the role of space-time, JHEP 02 (2004) 033 [hep-th/0312247] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. P.C. West, Brane dynamics, central charges and E 11, JHEP 03 (2005) 077 [hep-th/0412336] [SPIRES].

    Article  ADS  Google Scholar 

  16. N.A. Obers and B. Pioline, U-duality and M-theory, Phys. Rept. 318 (1999) 113 [hep-th/9809039] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. F. Riccioni and P.C. West, E 11 -extended spacetime and gauged supergravities, JHEP 02 (2008) 039 [arXiv:0712.1795] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. H. Nicolai and A. Kleinschmidt, E 10 : eine fundamentale Symmetrie der Physik?, Phys. Unserer Zeit 3 N41 (2010) 134.

    Article  ADS  Google Scholar 

  19. T. Damour, M. Henneaux and H. Nicolai, E 10 and a ’small tension expansion’ of M-theory, Phys. Rev. Lett. 89 (2002) 221601 [hep-th/0207267] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. T. Damour, M. Henneaux and H. Nicolai, Cosmological billiards, Class. Quant. Grav. 20 (2003) R145 [hep-th/0212256] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. D. Persson, Arithmetic and hyperbolic structures in string theory, arXiv:1001.3154 [SPIRES].

  22. C. Hillmann, Generalized E 7(7) coset dynamics and D = 11 supergravity, JHEP 03 (2009) 135 [arXiv:0901.1581] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099]. = MATH/0209099;

    Article  MathSciNet  MATH  Google Scholar 

  24. N. Hitchin, Brackets, forms and invariant functionals, math/0508618.

  25. M. Gualtieri, Generalized complex geometry, math/0401221.

  26. C.M. Hull, Generalised geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [SPIRES].

    Article  ADS  Google Scholar 

  27. P.P. Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. P.A.M. Dirac, The theory of gravitation in Hamiltonian form, Proc. Roy. Soc. Lond. A 246 (1958) 333 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. P.A.M. Dirac, Fixation of coordinates in the Hamiltonian theory of gravitation, Phys. Rev. 114 (1959) 924 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. R.L. Arnowitt, S. Deser and C.W. Misner, Dynamical structure and definition of energy in general relativity, Phys. Rev. 116 (1959) 1322 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. S. Deser, R. Arnowitt and C.W. Misner, Consistency of canonical reduction of general relativity, J. Math Phys. 1 (1960) 434 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. R.L. Arnowitt, S. Deser and C.W. Misner, Canonical variables for general relativity, Phys. Rev. 117 (1960) 1595 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, in Gravitation. An introduction to current research, L. Witten ed., John Wiley & Sons, U.S.A. (1962).

    Google Scholar 

  34. B.S. DeWitt, Quantum theory of gravity. 1. The canonical theory, Phys. Rev. 160 (1967) 1113 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  35. C.M. Hull, Duality and the signature of space-time, JHEP 11 (1998) 017 [hep-th/9807127] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. M.J. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B 242 (1990) 163 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. C.M. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. C.M. Hull, Global aspects of T-duality, gauged σ-models and T-folds, JHEP 10 (2007) 057 [hep-th/0604178] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. C.M. Hull, Doubled geometry and T-folds, JHEP 07 (2007) 080 [hep-th/0605149] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. M.J. Duff and J.X. Lu, Duality rotations in membrane theory, Nucl. Phys. B 347 (1990) 394 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. D.S. Berman and N.B. Copland, The string partition function in Hull’s doubled formalism, Phys. Lett. B 649 (2007) 325 [hep-th/0701080] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  47. D.S. Berman, N.B. Copland and D.C. Thompson, Background field equations for the duality symmetric string, Nucl. Phys. B 791 (2008) 175 [arXiv:0708.2267] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  48. D.S. Berman and D.C. Thompson, Duality symmetric strings, dilatons and O(d, d) effective actions, Phys. Lett. B 662 (2008) 279 [arXiv:0712.1121] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  49. S.D. Avramis, J.-P. Derendinger and N. Prezas, Conformal chiral boson models on twisted doubled tori and non-geometric string vacua, Nucl. Phys. B 827 (2010) 281 [arXiv:0910.0431] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. G. Bonelli and M. Zabzine, From current algebras for p-branes to topological M-theory, JHEP 09 (2005) 015 [hep-th/0507051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. G. Bonelli, A. Tanzini and M. Zabzine, On topological M-theory, Adv. Theor. Math. Phys. 10 (2006) 239 [hep-th/0509175] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  52. G. Bonelli, A. Tanzini and M. Zabzine, Topological branes, p-algebras and generalized Nahm equations, Phys. Lett. B 672 (2009) 390 [arXiv:0807.5113] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  53. G. Aldazabal, E. Andres, P.G. Camara and M. Graña, U-dual fluxes and generalized geometry, JHEP 11 (2010) 083 [arXiv:1007.5509] [SPIRES].

    Article  ADS  Google Scholar 

  54. M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, generalized geometry and non-geometric backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [SPIRES].

    Article  ADS  Google Scholar 

  55. E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. R.A. Reid-Edwards, Bi-algebras, generalised geometry and T-duality, arXiv:1001.2479 [SPIRES].

  58. N. Halmagyi, Non-geometric backgrounds and the first order string σ-model, arXiv:0906.2891 [SPIRES].

  59. J. McOrist, D.R. Morrison and S. Sethi, Geometries, non-geometries and fluxes, arXiv:1004.5447 [SPIRES].

  60. J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  61. V. Moncrief and C. Teitelboim, Momentum constraints as integrability conditions for the hamiltonian constraint in general relativity, Phys. Rev. D 6 (1972) 966 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  62. G.W. Gibbons, S.W. Hawking and M.J. Perry, Path integrals and the indefiniteness of the gravitational action, Nucl. Phys. B 138 (1978) 141 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  63. H.A. Buchdahl, Reciprocal static solutions of the equations of the gravitational field, Austral. J. Phys. 9 (1956) 13.

    MathSciNet  ADS  MATH  Google Scholar 

  64. J. Ehlers, Konstruktionen und Charakterisierung von Losungen der Einsteinschen Gravitationsfeldgleichungen, Ph.D. thesis, University of Hamburg, Hamburg, Germany (1957).

  65. R.P. Geroch, A method for generating solutions of Einstein’s equations, J. Math. Phys. 12 (1971) 918 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. R.P. Geroch, A Method for generating new solutions of Einstein’s equation. 2, J. Math. Phys. 13 (1972) 394 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. J. Thierry-Mieg, BRS structure of the antisymmetric tensor gauge theories, Nucl. Phys. B 335 (1990) 334 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  68. L. Baulieu and M. Henneaux, P forms and diffeomorphisms: hamiltonian formulation, Phys. Lett. B 194 (1987) 81 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  69. T. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990) 631.

    Article  MathSciNet  MATH  Google Scholar 

  70. E. Bergshoeff, E. Sezgin and P.K. Townsend, Properties of the eleven-dimensional super membrane theory, Ann. Phys. 185 (1988) 330 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  71. O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  72. C.M. Hull and B. Julia, Duality and moduli spaces for time-like reductions, Nucl. Phys. B 534 (1998) 250 [hep-th/9803239] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Berman.

Additional information

ArXiv ePrint: 1008.1763

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berman, D.S., Perry, M.J. Generalized geometry and M theory. J. High Energ. Phys. 2011, 74 (2011). https://doi.org/10.1007/JHEP06(2011)074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)074

Keywords

Navigation