Skip to main content
Log in

High-energy suppression of the Higgsstrahlung cross section in the Minimal Composite Higgs Model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

If the Higgs boson is composite, signs of this compositeness should appear via a formfactor-like suppression of Higgs scattering cross sections at momentum transfers above the compositeness scale. We explore this by computing the cross section for e + e ZH (Higgsstrahlung) in a warped five-dimensional gauge-Higgs unification model known as the Minimal Composite Higgs Model (MCHM). We observe that the Higgsstrahlung cross section in the MCHM is strongly suppressed compared to that in the Standard Model at center-of-mass energies above the scale of the first Kaluza-Klein excitations, due to cancellations among the contributions of successive Z boson Kaluza-Klein modes. We also show that the magnitude and sign of the coupling of the first Kaluza-Klein mode can be measured at a future electron-positron collider such as the proposed International Linear Collider or Compact Linear Collider.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3 and OPAL collaborations, R. Barate et al., Search for the Standard Model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].

    ADS  Google Scholar 

  2. LEP Electroweak Working Group webpage, http://lepewwg.web.cern.ch/LEPEWWG/, March 2012.

  3. ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, ATLAS-CONF-2012-093, CERN, Geneva Switzerland (2012) [INSPIRE].

  4. CMS collaboration, Observation of a new boson with a mass near 125 GeV, CMS-PAS-HIG-12-020, CERN, Geneva Switzerland (2012) [INSPIRE].

  5. P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions, Phys. Lett. B 64 (1976) 159 [INSPIRE].

    ADS  Google Scholar 

  6. P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions, Phys. Lett. B 69 (1977) 489 [INSPIRE].

    ADS  Google Scholar 

  7. P. Fayet, Weak interactions of a light gravitino: a lower limit on the gravitino mass from the decay ψ → gravitino + antiphotino, Phys. Lett. B 84 (1979) 421 [INSPIRE].

    ADS  Google Scholar 

  8. G.R. Farrar and P. Fayet, Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575 [INSPIRE].

    ADS  Google Scholar 

  9. S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].

  10. J. Kalinowski, SUSY theory review, Acta Phys. Polon. B 38 (2007) 0531 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. N. Arkani-Hamed, A. Cohen, E. Katz and A. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. N. Arkani-Hamed et al., The minimal moose for a little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [INSPIRE].

    Article  ADS  Google Scholar 

  15. V. Miransky, M. Tanabashi and K. Yamawaki, Dynamical electroweak symmetry breaking with large anomalous dimension and t quark condensate, Phys. Lett. B 221 (1989) 177 [INSPIRE].

    ADS  Google Scholar 

  16. C.T. Hill, Topcolor: top quark condensation in a gauge extension of the standard model, Phys. Lett. B 266 (1991) 419 [INSPIRE].

    ADS  Google Scholar 

  17. C.T. Hill, M.A. Luty and E.A. Paschos, Electroweak symmetry breaking by fourth generation condensates and the neutrino spectrum, Phys. Rev. D 43 (1991) 3011 [INSPIRE].

    ADS  Google Scholar 

  18. W.J. Marciano, Exotic new quarks and dynamical symmetry breaking, Phys. Rev. D 21 (1980) 2425 [INSPIRE].

    ADS  Google Scholar 

  19. L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [INSPIRE].

    ADS  Google Scholar 

  20. S. Weinberg, Implications of dynamical symmetry breaking: an addendum, Phys. Rev. D 19 (1979) 1277 [INSPIRE].

    ADS  Google Scholar 

  21. S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (1976) 974 [INSPIRE].

    ADS  Google Scholar 

  22. S. Dimopoulos and L. Susskind, Mass without scalars, Nucl. Phys. B 155 (1979) 237 [INSPIRE].

    Article  ADS  Google Scholar 

  23. T. Appelquist and L. Wijewardhana, Chiral hierarchies from slowly running couplings in technicolor theories, Phys. Rev. D 36 (1987) 568 [INSPIRE].

    ADS  Google Scholar 

  24. M. Piai, Lectures on walking technicolor, holography and gauge/gravity dualities, Adv. High Energy Phys. 2010 (2010) 464302 [arXiv:1004.0176] [INSPIRE].

    Google Scholar 

  25. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. H. Davoudiasl, B. Lillie and T.G. Rizzo, Off-the-wall Higgs in the universal Randall-Sundrum model, JHEP 08 (2006) 042 [hep-ph/0508279] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. G. Cacciapaglia, C. Csáki, G. Marandella and J. Terning, The gaugephobic Higgs, JHEP 02 (2007) 036 [hep-ph/0611358] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  29. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phy s. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

  30. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

    ADS  Google Scholar 

  31. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].

    Article  ADS  Google Scholar 

  32. R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].

    ADS  Google Scholar 

  33. A.D. Medina, N.R. Shah and C.E. Wagner, Gauge-Higgs unification and radiative electroweak symmetry breaking in warped extra dimensions, Phys. Rev. D 76 (2007) 095010 [arXiv:0706.1281] [INSPIRE].

    ADS  Google Scholar 

  34. K. Agashe and R. Contino, The minimal composite Higgs model and electroweak precision tests, Nucl. Phys. B 742 (2006) 59 [hep-ph/0510164] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M.S. Carena, E. Ponton, J. Santiago and C. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [INSPIRE].

    ADS  Google Scholar 

  36. M.S. Carena, E. Ponton, J. Santiago and C.E. Wagner, Light Kaluza Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. M. Carena, A.D. Medina, B. Panes, N.R. Shah and C.E. Wagner, Collider phenomenology of gauge-Higgs unification scenarios in warped extra dimensions, Phys. Rev. D 77 (2008) 076003 [arXiv:0712.0095] [INSPIRE].

    ADS  Google Scholar 

  38. M. Carena, A.D. Medina, N.R. Shah and C.E. Wagner, Gauge-Higgs unification, neutrino masses and dark matter in warped extra dimensions, Phys. Rev. D 79 (2009) 096010 [arXiv:0901.0609] [INSPIRE].

    ADS  Google Scholar 

  39. N. Manton, A new six-dimensional approach to the Weinberg-Salam model, Nucl. Phys. B 158 (1979) 141 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. D. Fairlie, Two consistent calculations of the Weinberg angle, J. Phys. G 5 (1979) L55 [INSPIRE].

    ADS  Google Scholar 

  41. D. Fairlie, Higgsfields and the determination of the Weinberg angle, Phys. Lett. B 82 (1979) 97 [INSPIRE].

    ADS  Google Scholar 

  42. P. Forgacs and N. Manton, Space-time symmetries in gauge theories, Commun. Math. Phys. 72 (1980) 15 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. D. Kapetanakis and G. Zoupanos, Coset space dimensional reduction of gauge theories, Phys. Rept. 219 (1992) 4 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  45. Y. Hosotani, Dynamical mass generation by compact extra dimensions, Phys. Lett. B 126 (1983) 309 [INSPIRE].

    ADS  Google Scholar 

  46. A. Falkowski, About the holographic pseudo-Goldstone boson, Phys. Rev. D 75 (2007) 025017 [hep-ph/0610336] [INSPIRE].

    ADS  Google Scholar 

  47. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].

    Article  ADS  Google Scholar 

  48. T. Gherghetta and A. Pomarol, The standard model partly supersymmetric, Phys. Rev. D 67 (2003) 085018 [hep-ph/0302001] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  49. N. Arkani-Hamed, Y. Grossman and M. Schmaltz, Split fermions in extra dimensions and exponentially small cross-sections at future colliders, Phys. Rev. D 61 (2000) 115004 [hep-ph/9909411] [INSPIRE].

    ADS  Google Scholar 

  50. H. Davoudiasl, S. Gopalakrishna, E. Ponton and J. Santiago, Warped 5-dimensional models: phenomenological status and experimental prospects, New J. Phys. 12 (2010) 075011 [arXiv:0908.1968] [INSPIRE].

    Article  ADS  Google Scholar 

  51. L. Randall and M.D. Schwartz, Quantum field theory and unification in AdS 5, JHEP 11 (2001) 003 [hep-th/0108114] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. T. Gherghetta, Les Houches lectures on warped models and holography, hep-ph/0601213 [INSPIRE].

  53. R. Sundrum, TASI 2004 lectures: to the fifth dimension and back, hep-th/0508134 [INSPIRE].

  54. H. Davoudiasl, J. Hewett and T. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity, Phys. Lett. B 486 (2000) 153 [hep-ph/9911294] [INSPIRE].

    ADS  Google Scholar 

  56. Y. Hosotani, Dynamical electroweak symmetry breaking in SO(5) × U(1) gauge-Higgs unification in the Randall-Sundrum warped space, arXiv:0901.2415 [INSPIRE].

  57. Y. Hosotani, M. Tanaka and N. Uekusa, Collider signatures of the SO(5) × U(1) gauge-Higgs unification, Phys. Rev. D 84 (2011) 075014 [arXiv:1103.6076] [INSPIRE].

    ADS  Google Scholar 

  58. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  59. J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs search at the LHC, JHEP 05 (2010) 065 [arXiv:1003.3251] [INSPIRE].

    Article  ADS  Google Scholar 

  60. K.L. McDonald and D.E. Morrissey, Low-energy signals from kinetic mixing with a warped Abelian hidden sector, JHEP 02 (2011) 087 [arXiv:1010.5999] [INSPIRE].

    Article  ADS  Google Scholar 

  61. ILC collaboration, J. Brau et al., ILC reference design report: ILC global design effort and world wide study, arXiv:0712.1950 [INSPIRE].

  62. ILC collaboration, G. Aarons et al., International Linear Collider reference design report volume 2: physics at the ILC, arXiv:0709.1893 [INSPIRE].

  63. CLIC Study Team collaboration, A 3 TeV e + e linear collider based on CLIC technology, CERN-2000-008, CERN, Geneva Switzerland (2000) [INSPIRE].

  64. J.R. Culham, Bessel functions of the first and second kind, http://www.mhtl.uwaterloo.ca/courses/me755/web chap4.pdf, Canada, August 2011.

  65. E.W. Weisstein, Wolfram MathWorld webpage, http://mathworld.wolfram.com/, August 2011.

  66. Maplesoft, Maple help center webpage, http://www.maplesoft.com/support/help/Maple, August 2011.

  67. K. Agashe et al., LHC signals for coset electroweak gauge bosons in warped/composite PGB Higgs models, Phys. Rev. D 81 (2010) 096002 [arXiv:0911.0059] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather E. Logan.

Additional information

ArXiv ePrint: 1208.1018

Previously Katy Hally. (Katy Hartling)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartling, K., Logan, H.E. High-energy suppression of the Higgsstrahlung cross section in the Minimal Composite Higgs Model. J. High Energ. Phys. 2013, 167 (2013). https://doi.org/10.1007/JHEP01(2013)167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)167

Keywords

Navigation