Skip to main content
Log in

Melting Point Assay for the JAK2 V617F Mutation, Comparison with Amplification Refractory Mutation System (ARMS) in Diagnostic Samples, and Implications for Daily Routine

  • Technology Report
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background: Reliable detection of the JAK2 V617F mutation is a major criterion in the diagnosis of BCR/ABL-negative myeloproliferative neoplasms such as polycythemia vera, essential thrombocythemia, and primary myelofibrosis. A multitude of methods has been applied to both qualitative and quantitative assessment of the mutational status of patients, without defining a gold standard for the daily diagnostic routine so far.

Methods: We developed a melting point assay to be used on a Rotor-Gene® thermal cycler machine, using asymmetric primer concentrations. A human erythroleukemia cell line (HEL) was used as a positive control in a 3-fold lower concentration than the negative control because of the gene amplification of the mutated JAK2 kinase in this cell line. Routine samples from both blood and bone marrow were processed. Additionally, samples were analyzed using an amplification refractory mutation system (ARMS).

Results: The sensitivity of the melting point approach was a 5% mutational load. Of 314 bone marrow or blood DNA samples tested, 101 were ARMS positive, and of these, 90 samples tested positive in the melting point assay. Most of the patients had a mutational load between 20% and 50%. No patient had a JAK2 V617F burden higher than 80%. There was no significant difference in the source (bone marrow versus blood), sex, and patient age.

Conclusions: We present a reliable and feasible approach for quantitative assessment of the JAK2 V617F status from both blood and bone marrow. A homozygotic mutated cell line or plasmids should be used for dilution standards. We recommend combining this assay with ARMS PCR for result confirmation and higher overall sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005 Apr 28; 434(7037): 1144–8

    Article  PubMed  CAS  Google Scholar 

  2. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005 Apr 28; 352(17): 1779–90

    Article  PubMed  CAS  Google Scholar 

  3. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005 Apr; 7(4): 387–97

    Article  PubMed  CAS  Google Scholar 

  4. Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005 Mar 19–25; 365(9464): 1054–61

    PubMed  CAS  Google Scholar 

  5. Zhao R, Xing S, Li Z, et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005 Jun 17; 280(24): 22788–92

    Article  PubMed  CAS  Google Scholar 

  6. Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008 Jan; 22(1): 14–22

    Article  PubMed  CAS  Google Scholar 

  7. Vannucchi AM, Antonioli E, Guglielmelli P, et al. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood 2007 Aug 1; 110(3): 840–6

    Article  PubMed  CAS  Google Scholar 

  8. Vannucchi AM, Antonioli E, Guglielmelli P, et al. Prospective identification of high-risk polycythemia vera patients based on JAK2(V617F) allele burden. Leukemia 2007 Sep; 21(9): 1952–9

    Article  PubMed  CAS  Google Scholar 

  9. Barosi G, Bergamaschi G, Marchetti M, et al. JAK2 V617F mutational status predicts progression to large splenomegaly and leukemic transformation in primary myelofibrosis. Blood 2007 Dec 1; 110(12): 430–6

    Article  Google Scholar 

  10. Kiladjian JJ, Cassinat B, Turlure P, et al. High molecular response rate of polycythemia vera patients treated with pegylated interferon alpha-2a. Blood 2006 Sep 15; 108(6): 2037–40

    Article  PubMed  CAS  Google Scholar 

  11. Kroger N, Badbaran A, Holler E, et al. Monitoring of the JAK2-V617F mutation by highly sensitive quantitative real-time PCR after allogeneic stem cell transplantation in patients with myelofibrosis. Blood 2007 Feb 1; 109(3): 1316–21

    Article  PubMed  Google Scholar 

  12. Steckel NK, Koldehoff M, Ditschkowski M, et al. Use of the activating gene mutation of the tyrosine kinase (VAL617Phe) JAK2 as a minimal residual disease marker in patients with myelofibrosis and myeloid metaplasia after allogeneic stem cell transplantation. Transplantation 2007 Jun 15; 83(11): 1518–20

    Article  PubMed  CAS  Google Scholar 

  13. Palandri F, Ottaviani E, Salmi F, et al. JAK2 V617F mutation in essential thrombocythemia: correlation with clinical characteristics, response to therapy and long-term outcome in a cohort of 275 patients. Leuk Lymphoma 2009 Feb; 50(2): 247–53

    Article  PubMed  CAS  Google Scholar 

  14. Campbell PJ, Scott LM, Buck G, et al. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet 2005 Dec 3; 366(9501): 1945–53

    Article  PubMed  CAS  Google Scholar 

  15. Steensma DP, Dewald GW, Lasho TL, et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both ‘atypical’ myeloproliferative disorders and myelodysplastic syndromes. Blood 2005 Aug 15; 106(4): 1207–9

    Article  PubMed  CAS  Google Scholar 

  16. Antonioli E, Guglielmelli P, Pancrazzi A, et al. Clinical implications of the JAK2 V617F mutation in essential thrombocythemia. Leukemia 2005 Oct; 19(10): 1847–9

    Article  PubMed  CAS  Google Scholar 

  17. Jones AV, Kreil S, Zoi K, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 2005 Sep 15; 106(6): 2162–8

    Article  PubMed  CAS  Google Scholar 

  18. Jelinek J, Oki Y, Gharibyan V, et al. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood 2005 Nov 15; 106(10): 3370–3

    Article  PubMed  CAS  Google Scholar 

  19. Antonioli E, Guglielmelli P, Poli G, et al. Influence of JAK2V617F allele burden on phenotype in essential thrombocythemia. Haematologica 2008 Jan; 93(1): 41–8

    Article  PubMed  CAS  Google Scholar 

  20. Olsen RJ, Tang Z, Farkas DH, et al. Detection of the JAK2(V617F) mutation in myeloproliferative disorders by melting curve analysis using the Light-Cycler system. Arch Pathol Lab Med 2006 Jul; 130(7): 997–1003

    PubMed  CAS  Google Scholar 

  21. McClure R, Mai M, Lasho T. Validation of two clinically useful assays for evaluation of JAK2 V617F mutation in chronic myeloproliferative disorders. Leukemia 2006 Jan; 20(1): 168–71

    Article  PubMed  CAS  Google Scholar 

  22. James C, Delhommeau F, Marzac C, et al. Detection of JAK2 V617F as a first intention diagnostic test for erythrocytosis. Leukemia 2006 Feb; 20(2): 350–3

    Article  PubMed  CAS  Google Scholar 

  23. Sutton BC, Allen RA, Zhao ZJ, et al. Detection of the JAK2V617F mutation by asymmetric PCR and melt curve analysis. Cancer Biomark 2007; 3(6): 315–24

    PubMed  CAS  Google Scholar 

  24. Lay M, Mariappan R, Gotlib J, et al. Detection of the JAK2 V617F mutation by LightCycler PCR and probe dissociation analysis. J Mol Diagn 2006 Jul; 8(3): 330–4

    Article  PubMed  CAS  Google Scholar 

  25. Murugesan G, Aboudola S, Szpurka H, et al. Identification of the JAK2 V617F mutation in chronic myeloproliferative disorders using FRET probes and melting curve analysis. Am J Clin Pathol 2006 Apr; 125(4): 625–33

    PubMed  CAS  Google Scholar 

  26. Martin P, Papayannopoulou T. HEL cells: a new human erythroleukemia cell line with spontaneous and induced globin expression. Science 1982; 216(4551): 1233–5

    Article  PubMed  CAS  Google Scholar 

  27. Quentmeier H, MacLeod R, Zaborski M, et al. JAK2 V617F tyrosine kinase mutation in cell lines derived from myeloproliferative disorders. Leukemia 2006; 20(3): 471–6

    Article  PubMed  CAS  Google Scholar 

  28. Tefferi A, Thiele J, Vardiman JW. The 2008 World Health Organization classification system for myeloproliferative neoplasms: order out of chaos. Cancer 2009 Sep 1; 115(17): 3842–7

    Article  PubMed  CAS  Google Scholar 

  29. Steensma DP. JAK2 V617F in myeloid disorders: molecular diagnostic techniques and their clinical utility: a paper from the 2005 William Beaumont Hospital Symposium on Molecular Pathology. J Mol Diagn 2006 Sep; 8(4): 397–411; quiz 526

    Article  PubMed  CAS  Google Scholar 

  30. Lee JW, Soung YH, Kim SY, et al. JAK2 V617F mutation is uncommon in non-Hodgkin lymphomas. Leuk Lymphoma 2006 Feb; 47(2): 313–4

    Article  PubMed  CAS  Google Scholar 

  31. Vannucchi AM, Pancrazzi A, Bogani C, et al. A quantitative assay for JAK2(V617F) mutation in myeloproliferative disorders by ARMS-PCR and capillary electrophoresis. Leukemia 2006 Jun; 20(6): 1055–60

    Article  PubMed  CAS  Google Scholar 

  32. Poodt J, Fijnheer R, Walsh IB, et al. A sensitive and reliable semi-quantitative real-time PCR assay to detect JAK2 V617F in blood. Hematol Oncol 2006 Dec; 24(4): 227–33

    Article  PubMed  CAS  Google Scholar 

  33. Burmeister T, Schwartz S, Taubald A, et al. Atypical BCR-ABL mRNA transcripts in adult acute lymphoblastic leukemia. Haematologica 2007 Dec; 92(12): 1699–702

    Article  PubMed  CAS  Google Scholar 

  34. Lippert E, Girodon F, Hammond E, et al. Concordance of assays designed for the quantification of JAK2V617F: a multicenter study. Haematologica 2009 Jan; 94(1): 38–45

    Article  PubMed  CAS  Google Scholar 

  35. Larsen TS, Pallisgaard N, Moller MB, et al. The JAK2 V617F allele burden in essential thrombocythemia, polycythemia vera and primary myelofibrosis: impact on disease phenotype. Eur J Haematol 2007 Dec; 79(6): 508–15

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mara Molkentin and Claudia Seide for technical assistance. Thomas Burmeister was supported by the Deutsche José Carreras Leukämie-Stiftung (Munich, Germany). The authors have no conflicts of interest that are directly relevant to the content of this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Ochsenreither.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochsenreither, S., Reinwald, M., Thiel, E. et al. Melting Point Assay for the JAK2 V617F Mutation, Comparison with Amplification Refractory Mutation System (ARMS) in Diagnostic Samples, and Implications for Daily Routine. Mol Diag Ther 14, 185–190 (2010). https://doi.org/10.1007/BF03256372

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256372

Keywords

Navigation