Skip to main content
Log in

Homocysteine,MTHFR gene polymorphisms, and cardio-cerebrovascular risk

  • Review Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Vascular diseases are commonly associated with traditional risk factors, but in the last decade scientific evidence has suggested that elevated plasma levels of homocysteine are associated with an increased risk of atherosclerosis and cardiovascular ischaemic events. Cardio- and cerebrovascular diseases are multifactorial, as their aetiopathogenesis is determined by genetic and environmental factors and by gene-gene and gene-environment interactions. Experimental studies have shown that many possible mechanisms are implicated in the pro-atherogenic effect of homocysteine. Hyperhomocysteinaemia may confer a mild risk alone, but it increases the risk of disease in association with other factors promoting vascular lesions. Variants in genes encoding enzymes involved in homocysteine metabolism, or depletion of important cofactors or substrates for those enzymes, including folate, vitamin B12 and vitamin B6, may result in elevated plasma homocysteine levels. Several studies have been performed to elucidate the genetic determinant of hyperhomocysteinaemia in patients with vascular disease, and theMTHFR 677C>T polymorphism is the one most extensively investigated. However, the lack of homogeneity in the data and the high number of factors influencing plasma homocysteine concentrations remain conflicting. Moreover, studies on the evaluation of therapeutic interventions in improving the atherogenic profile, lowering plasma homocysteine levels, and preventing vascular events, have shown inconsistent results, which are reviewed in this paper. More prospective, double-blind, randomized studies, including folate and vitamin B interventions, and genotyping for polymorphisms in genes involved in homocysteine metabolism, might better define the relationship between mild hyperhomocysteinaemia and vascular damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbate R, Sofi F, Brogi D, Marcucci R, 2003. Emerging risk factors for ischemic stroke. Neurol Sci May; 24 Suppl 1: S11–12.

    Article  PubMed  Google Scholar 

  • Alfthan G, Pekkanen J, Jauhiainen M, Pitkäniemi J, Karvonen M, Tuomilehto J, et al. 1994. Relation of serum homocysteine and lipoprotein (a) concentrations to atherosclerotic disease in a prospective Finnish population based study. Atherosclerosis 106: 9–19.

    Article  CAS  PubMed  Google Scholar 

  • Alluri RV, Mohan V, Komandur S, Chawda K, Chaudhuri JR, Hasan Q, 2005.MTHFR C677T gene mutation as a risk factor for arterial stroke: a hospital based study. Eur J Neurol 12: 40–44.

    Article  CAS  PubMed  Google Scholar 

  • Arnesen E, Refsum H, Bonaa KH, Ueland PM, Forde OH, Nordrehaug JE, 1995. Serum total homocysteine and coronary artery disease. Int J Epidemiol 24: 704–709.

    Article  CAS  PubMed  Google Scholar 

  • Austin RC, Lentz SR, Werstuck GH, 2004. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ. Jul: 11 Suppl 1: S56–64.

    Article  CAS  PubMed  Google Scholar 

  • Bailey LB, Gregory JF 3rd, 1999. Polymorphisms of methylenetetrahydrofolate reductase and other enzymes: metabolic significance, risks and impact on folate requirement. J Nutr 129: 919–922.

    CAS  PubMed  Google Scholar 

  • Bendini MG, Lanza GA, Mazza A, Giordano A, Leggio M, Menichini G, et al. 2007. Risk factors for cardiovascular diseases: what is the role for homocysteine? G Ital Cardiol 8: 148–160.

    Google Scholar 

  • Berg K, Malinow MR, Kierulf P, Upson B, 1992. Population variation and genetics of plasma homocyst(e)ine level. Clin Genet 41: 315–321.

    Article  CAS  PubMed  Google Scholar 

  • Bezemer ID, Doggen CJ, Vos HL, Rosendaal FR, 2007. No association between the commonMTHFR 677C>T polymorphism and venous thrombosis: results from the MEGA study. Arch Intern Med 167: 497–501.

    Article  CAS  PubMed  Google Scholar 

  • Bilsborough W, Green DJ, Mamotte CD, van Bockxmeer FM, O’Driscoll GJ, Taylor RR, 2003. Endothelial nitric oxide synthase gene polymorphism, homocysteine, cholesterol and vascular endothelial function. Atherosclerosis 169: 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Blasco C, Caballería J, Deulofeu R, Lligońa A, Parés A, Lluis JM, et al. 2005. Prevalence and mechanisms of hyperhomocysteinemia in chronic alcoholics. Alcohol Clin Exp Res 29: 1044–1048.

    Article  CAS  PubMed  Google Scholar 

  • Boers GH, Smals AG, Trijbels FJ, Fowler B, Bakkeren JA, Schoonderwaldt HC, et al. 1985. Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive arterial disease. N Engl J Med 313: 709–715.

    Article  CAS  PubMed  Google Scholar 

  • Bosco P, Guéant-Rodriguez RM, Anello G, Spada R, Romano A, Fajardo A, et al. 2006. Association of homocysteine (but not ofMTHFR 677C>T,MTR 2756A>G,MTRR 66A>G andTCN2 776C>G) with ischaemic cerebrovascular disease in Sicily. Thromb Haemost 96: 154–159.

    CAS  PubMed  Google Scholar 

  • Bostom AG, Lathrop L, 1997. Hyperhomocysteinemia in end-stage renal disease: prevalence, etiology, and potential relationship to arteriosclerotic outcomes. Kidney Int 52: 10–20.

    Article  CAS  PubMed  Google Scholar 

  • Bostom AG, Shemin D, Verhoef P, Nadeau MR, Jacques PF, Selhub J, et al. 1997. Elevated fasting total plasma homocysteine levels and cardiovascular disease outcomes in maintenance dialysis patients: a prospective study. Arterioscler Thromb Vasc Biol 17: 2554–2558.

    CAS  PubMed  Google Scholar 

  • Bostom AG, Silbershatz H, Rosenberg IH, Selhub J, D’Agostino RB, Wolf PA, et al. 1999. Nonfasting plasma total homocysteine levels and all-cause and cardiovascular disease mortality in elderly Framingham men and women. Arch Intern Med 159: 1077–1080.

    Article  CAS  PubMed  Google Scholar 

  • Botto LD, Yang Q, 2000. 5,10-Methylenetetra-hydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol 151: 862–877.

    CAS  PubMed  Google Scholar 

  • Boushey CJ, Beresford SAA, Omenn GS, Motulsky AG, 1995. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 274: 1049–1057.

    Article  CAS  PubMed  Google Scholar 

  • Brattström LE, Hardebo JE, Hultberg BL, 1984. Moderate homocysteinemia: a possible risk factor for arteriosclerotic cerebrovascular disease. Stroke 15: 1012–1015.

    PubMed  Google Scholar 

  • Brattström L, Wilcken DE, Ohrvik J, Brudin L, 1998. Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: the result of a meta-analysis. Circulation. 98: 2520–2526.

    PubMed  Google Scholar 

  • Brown K, Luddington R, Baglin T, 1998. Effect of the MTHFRC677T variant on risk of venous thromboembolism: interaction with factor V Leiden and prothrombin (F2G20210A) mutations. Br J Haematol 103: 42–44.

    Article  CAS  PubMed  Google Scholar 

  • Caramia G, Belardinelli R, 2006. Iperomocisteinemia in etŕ evolutiva e aspetti nutrizionali dei folati: un fattore di rischio cardiovascolare precoce. Monadi Arch Chest Dis 66: 275–285.

    Google Scholar 

  • Casas JP, Bautista LE, Smeeth L, Sharma P, Hingorani AD, 2005. Homocysteine and stroke: evidence on a causal link from Mendelian randomisation. Lancet 365: 224–232.

    CAS  PubMed  Google Scholar 

  • Cattaneo M, Vecchi M, Zighetti ML, Saibeni S, Martinelli I, Omodei P, et al. 1998. High prevalence of hyperhomocysteinemia in patients with inflammatory bowel disease: a pathogenic link with thromboembolic complications? Thromb Haemost 80: 542–545.

    CAS  PubMed  Google Scholar 

  • Cattaneo M, Chantarangkul V, Taioli E, Santos JH, Tagliabue L, 1999. The G20210A mutation of the prothrombin gene in patients with previous first episodes of deep-vein thrombosis: prevalence and association with factor V G1691A, methylenetetrahydrofolate reductase C677T and plasma prothrombin levels. Thromb Res 93: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Chambers JC, McGregor A, Jean-Marie J, Obeid OA, Kooner JS, 1999. Demonstration of rapid onset vascular endothelial dysfunction after hyperhomocysteinemia: an effect reversible with vitamin C therapy. Circulation 99: 1156–1160.

    CAS  PubMed  Google Scholar 

  • Chwatko G, Boers GHJ, Strauss KA, Shih DM, Jakubowski H, 2007. Mutations in methylenetetrahydrofolate reductase or cystathionine beta-synthase gene, or a high-methionine diet, increase homocysteine thiolactone levels in humans and mice. FASEB J 21: 1707–1713.

    Article  CAS  PubMed  Google Scholar 

  • Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM, 1998. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 55: 1449–1455.

    Article  CAS  PubMed  Google Scholar 

  • Coppola A, Albisinni R, Madonna P, Pagano A, Cerbone AM, Di Minno G, 1997. Platelet and monocyte variables in homocystinuria due to cystathionine-beta-synthase deficiency. Haematologica 92: 189–190.

    Google Scholar 

  • Cravo ML, Glória LM, Selhub J, Nadeau MR, Camilo ME, Resende MP, et al. 1996. Hyperhomocysteinemia in chronic alcoholism: correlation with folate, vitamin B-12, and vitamin B-6 status. Am J Clin Nutr 63: 220–224.

    CAS  PubMed  Google Scholar 

  • Cronin S, Furie KL, Kelly PJ, 2005. Dose-related association of MTHFR 677T allele with risk of ischemic stroke: evidence from a cumulative metaanalysis. Stroke 36: 1581–1587.

    Article  CAS  PubMed  Google Scholar 

  • Dedoussis GV, Panagiotakos DB, Pitsavos C, Chrysohoou C, Skoumas J, Choumerianou D, et al. 2005. An association between the methyl-enetetrahydrofolate reductase (MTHFR) C677T mutation and inflammation markers related to cardiovascular disease. Internat J Cardiol 100: 409–414.

    Article  Google Scholar 

  • De Luca G, Suryapranata H, Gregorio G, Lange H, Chiariello M, 2005. Homocysteine and its effects on in-stent restenosis. Circulation 112: e307–311.

    Article  Google Scholar 

  • den Heijer M, Koster T, Blom HJ, Bos GM, Briet E, Reitsma PH, et al. 1996. Hyperhomocysteinemia as a risk factor for deep-vein thrombosis. N Engl J Med 334: 759–762.

    Article  Google Scholar 

  • De Vecchi AF, Bamonti Catena F, 1999. L’omocisteina in dialisi peritoneale. Giornale Italiano di Nefrologia 6: 654–663.

    Google Scholar 

  • Dikmen M, Ozbabalik D, Gunes HV, Degirmenci I, Bal C, Ozdemir G, et al. 2006. Acute stroke in relation to homocysteine and methylenetetra-hydrofolate reductase gene polymorphisms. Acta Neurol Scand 113: 307–314.

    Article  CAS  PubMed  Google Scholar 

  • Di Minno G, Davì G, Margaglione M, Cirillo F, Grandone E, Ciabattoni G, et al. 1993. Abnormally high thromboxane biosynthesis in homozygous homocystinuria. Evidence for platelet involvement and probucol-sensitive mechanism. J Clin Invest 92: 1400–1406.

    Article  Google Scholar 

  • Durand P, Prost M, Blache D, 1996. Pro-thrombotic effects of a folic acid deficient diet in rat platelets and macrophages related to elevated homocysteine and decreased n-3 polyunsaturated fatty acids. Atherosclerosis 121: 231–243.

    Article  CAS  PubMed  Google Scholar 

  • Durand P, Lussier-Cacan S, Blache D, 1997. Acute methionine load induced hyperhomocysteinemia enhances platelet aggregation, thromboxane biosynthesis, and macrophage-derived tissue factor activity in rats. FASEB Lett. 11: 1157–1168.

    CAS  Google Scholar 

  • Durand P, Prost M, Loreau N, Lussier-Cacan S, Blache D, 2001. Impaired homocysteine metabolism and atherothrombotic disease. Lab Invest 81: 645–672.

    Article  CAS  PubMed  Google Scholar 

  • Eldibany MM, Caprini JA, 2007. Hyperhomocysteinemia and thrombosis: an overview. Arch Pathol Lab Med 131: 872–884.

    CAS  PubMed  Google Scholar 

  • Engbersen AM, Franken DG, Boers GH, Stevens EM, Trijbels FJ, 1995. Thermolabile 5, 10-methyl-enetetrahydrofolate reductase as a cause of mild hyperhomocysteinemia. Am J Hum Genet 56: 142–150.

    CAS  PubMed  Google Scholar 

  • Evans R, Shaten J, Hempel J, Cutler J, Kuller L, 1997. Homocyst(e)ine and risk of cardiovascular disease in the Multiple Risk Factor Intervention Trial. Arterioscler Thromb Vasc Biol 17: 1947–1953.

    CAS  PubMed  Google Scholar 

  • Fallon UB, Virtamo J, Young I, McMaster D, Ben-Shlomo Y, Wood N, et al. 2003. Homocysteine and cerebral infarction in Finnish male smokers. Stroke 34: 1359–1363.

    Article  CAS  PubMed  Google Scholar 

  • Folsom AR, Nieto FJ, McGovern PG, Tsai MY, Malinow MR, Eckfeldt JH, et al. 1998. Prospective study of coronary heart disease incidence in relation to fasting total homocysteine, related genetic polymorphisms, and B vitamins. Circulation 98: 204–210.

    CAS  PubMed  Google Scholar 

  • Franco RF, Araujo AG, Guerreiro JF, Elion J, Zago MA, 1998. Analysis of the 677 C T mutation of the methylenetetrahydrofolate reductase gene in different ethnic groups. Thromb Haemost 79: 119–121.

    CAS  PubMed  Google Scholar 

  • Franco RF, Morelli V, Lourenço D, Maffei FH, Tavella MH, Piccinato CE, et al. 1999. A second mutation in the methylenetetrahydrofolate reductase gene and the risk of venous thrombotic disease. Br J Haematol 105: 556–559.

    Article  CAS  PubMed  Google Scholar 

  • Franken DG, Boers GH, Blom HJ, Cruysberg JR, Trijbels FJ, Hamel BC, 1996. Prevalence of familial mild hyperhomocysteinemia. Atherosclerosis 125: 71–80.

    Article  CAS  PubMed  Google Scholar 

  • Frei B, 1999. On the role of vitamin C and other antioxidants in atherogenesis and vascular dysfunction. Proc Soc Exp Biol Med 222: 196–204.

    Article  CAS  PubMed  Google Scholar 

  • Friedman G, Goldschmidt N, Friedlander Y, Ben-Yehuda A, Selhub J, Babaey S, et al. 1999. A common mutation A1298C in human methylenetetrahydrofolate reductase gene: association with plasma total homocysteine and folate concentrations. J Nutr 129: 1656–1661.

    CAS  PubMed  Google Scholar 

  • Friso S, Girelli D, Trabetti E, Stranieri C, Olivieri O, Tinazzi E, et al. 2002. A1298C methylenetetrahydrofolate reductase mutation and coronary artery disease: relationships with C677T polymorphism and homocysteine/folate metabolism. Clin Exp Med 2: 7–12.

    Article  CAS  PubMed  Google Scholar 

  • Fryer R, Wilson B, Gubler D, Fitzgerald L, Rodgers G, 1993. Homocysteine, a risk factor for premature vascular disease and thrombosis, induces tissue factor activity in endothelial cells. Arterioscler Thromb Vasc Biol 13: 405–410.

    Google Scholar 

  • Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. 1995. Identification of a candidate genetic risk factor for vascular disease: a common mutation at the methylenetetrahydrofolate reductase locus. Nat Genet 10: 111–113.

    Article  CAS  PubMed  Google Scholar 

  • Genest JJ Jr, McNamara JR, Upson B, Salem DN, Ordovas JM, Schaefer EJ, et al. 1991. Prevalence of familial hyperhomocyst(e)inemia in men with premature coronary artery disease. Arterioscler Thromb 11: 1129–1136.

    PubMed  Google Scholar 

  • Girelli D, Friso S, Trabetti E, Olivieri O, Russo C, Pessotto R, et al. 1998. Methylenetetrahydrofolate reductase C677T mutation, plasma homocysteine, and folate in subjects from northern Italy with or without angiographically documented severe coronary atherosclerotic disease: evidence for an important genetic-environmental interaction. Blood 91: 4158–4163.

    CAS  PubMed  Google Scholar 

  • Girelli D, Martinelli N, Pizzolo F, Friso S, Olivieri O, Stranieri C, et al. 2003. The interaction betweenMTHFR 677 C—>T genotype and folate status is a determinant of coronary atherosclerosis risk. J Nutr 133: 1281–1285.

    CAS  PubMed  Google Scholar 

  • Goyette P, Christensen B, Rosenblatt DS, Rozen R, 1996. Severe and mild mutations in cis for the methylenetetrahydrofolate reductase (MTHFR) gene, and description of five novel mutations inMTHFR. Am J Hum Genet 59: 1268–1275.

    CAS  PubMed  Google Scholar 

  • Graham IM, Daly LE, Refsum HM, Robinson K, Brattström LE, Ueland PM, et al. 1997. Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA 277: 1775–1781.

    Article  CAS  PubMed  Google Scholar 

  • Guéant-Rodriguez RM, Juilliére Y, Candito M, Adjalla CE, Gibelin P, Herbeth B, et al. 2005. Association ofMTRR A66G polymorphism (but not ofMTHFR C677T and A1298C,MTR A2756G,TCN C776G) with homocysteine and coronary artery disease in the French population. Thromb Haemost 94: 510–515.

    PubMed  Google Scholar 

  • Guenther BD, Sheppard CA, Tran P, Rozen R, Matthews RG, Ludwig ML, 1999. The structure and properties of methylenetetrahydrofolate reductase fromEscherichia coli suggest how folate ameliorates human hyperhomocysteinemia. Nat Struct Biol 6: 359–365.

    Article  CAS  PubMed  Google Scholar 

  • Guttormsen AB, Ueland PM, Nesthus I, Nygĺrd O, Schneede J, Vollset SE, et al. 1996. Determinants and vitamin responsiveness of intermediate hyperhomocysteinemia (≥40 mol/liter). The Hordaland homocysteine study. J Clin Invest 98: 2174–2183.

    Article  CAS  PubMed  Google Scholar 

  • Hajjar KA, Mauri L, Jacovina AT, Zhong F, Mirza UA, Padovan JC, et al. 1998. Tissue plasminogen activator binding to the annexin II tail domain. J Biol Chem 273: 9987–9993.

    Article  CAS  PubMed  Google Scholar 

  • Hankey GJ, Eikelboom JW, 1999. Homocysteine and vascular disease. Lancet 354: 407–413.

    Article  CAS  PubMed  Google Scholar 

  • Harker L, Ross R, Slichter S, Scott C, 1976. Homocystine-induced arteriosclerosis: the role of endothelial cell injury and platelet response in its genesis. J Clin Invest 58: 731–741.

    Article  CAS  PubMed  Google Scholar 

  • Harker L, Harian J, Ross R, 1983. Effect of sulfinpyrazone on homocysteine-induced endothelial injury and arteriosclerosis in baboons. Circ Res 53: 731–739.

    CAS  PubMed  Google Scholar 

  • Harmon DL, Woodside JV, Yarnell JW, McMaster D, Young IS, McCrum EE, et al. 1996. The common ‘thermolabile’ variant of methylene tetrahydrofolate reductase is a major determinant of mild hyperhomocysteinaemia. QJM 89: 571–577.

    CAS  PubMed  Google Scholar 

  • Harmon DL, Doyle RM, Meleady R, Doyle M, Shields DC, Barry R, et al. 1999. Genetic analysis of the thermolabile variant of 5, 10-methylenetetra-hydrofolate reductase as a risk factor for ischemic stroke. Arterioscler Thromb Vasc Biol 19: 208–211.

    CAS  PubMed  Google Scholar 

  • Harpel P, Zhang X, Borth W, 1996. Homocysteine and hemostasis: pathogenetic mechanisms predisposing to thrombosis. J Nutr 126: 1285S-1289S.

    CAS  PubMed  Google Scholar 

  • Homocysteine Studies Collaboration, 2002. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288: 2015–2022.

    Article  Google Scholar 

  • Hoogeveen EK, Kostense PJ, Jakobs C, Dekker JM, Nijpels G, Heine RJ, et al. 2000. Hyperhomocysteinemia increases risk of death, especially in type 2 diabetes: 5-year follow-up of the Hoorn Study. Circulation 101: 1506–1511.

    CAS  PubMed  Google Scholar 

  • Inbal A, Freimark D, Modan B, Chetrit A, Matetzky S, Rosenberg N, et al. 1999. Synergistic effects of prothrombotic polymorphisms and atherogenic factors on the risk of myocardial infarction in young males. Blood 93: 2186–2190.

    CAS  PubMed  Google Scholar 

  • Jacques PF, Bostom AG, Williams RR, Ellison RC, Eckfeldt JH, Rosenberg IH, et al. 1996. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 93: 7–9.

    CAS  PubMed  Google Scholar 

  • Jacques PF, Selhub J, Bostom AG, Wilson PW, Rosenberg IH, 1999. The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med 340: 1449–1454.

    Article  CAS  PubMed  Google Scholar 

  • Jonasson TF, Hedner T, Hultberg B, Ohlin H, 2003. Hyperhomocysteinaemia is not associated with increased levels of asymmetric dimethylarginine in patients with ischaemic heart disease. Eur J Clin Invest 33: 543–549.

    Article  CAS  PubMed  Google Scholar 

  • Kalita J, Srivastava R, Bansal V, Agarwal S, Misra UK, 2006. Methylenetetrahydrofolate reductase gene polymorphism in Indian stroke patients. Neurol India 54: 260–263.

    Article  CAS  PubMed  Google Scholar 

  • Kanani PM, Sinkey CA, Browning RL, Allaman M, Knapp HR, Haynes WG, et al. 1999. Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocyst(e)inemia in humans. Circulation 100: 1161–1168.

    CAS  PubMed  Google Scholar 

  • Kang SS, Zhou J, Wong PWK, Kowalisyn J, Strokosch G, 1988. Intermediate homo-cysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet 43: 414–421.

    CAS  PubMed  Google Scholar 

  • Kang SS, Wong PW, Susmano A, Sora J, Norusis M, Ruggie N, 1991. Thermolabile methylenetetrahydrofolate reductase: an inherited risk factor for coronary artery disease. Am J Hum Genet 48: 536–545.

    CAS  PubMed  Google Scholar 

  • Kang SS, Wong PW, Malinow MR, 1992. Hyperhomocysteinemia as a risk factor for occlusive vascular disease. Annu Rev Nutr 12: 279–298.

    Article  CAS  PubMed  Google Scholar 

  • Kelly PJ, Shih VE, Kistler JP, Barron M, Lee H, Mandell R, et al. 2003. Low vitamin B6 but not homocyst(e)ine is associated with increased risk of stroke and transient ischemic attack in the era of folic acid grain fortification. Stroke 34: e5l-54.

    Article  CAS  Google Scholar 

  • Klerk M, Verhoef P, Clarke R, Blom HJ, Kok FJ, Schouten EG, et al. 2002. MTHFR Studies Collaboration Group. MTHFR 677C—>T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA 288: 2023–2031.

    Article  CAS  PubMed  Google Scholar 

  • Kruit MC, van Buchem MA, Hofman PA, Bakkers JT, Terwindt GM, Ferrari MD, et al. 2004. Migraine as a risk factor for subclinical brain lesions. JAMA 291: 427–434.

    Article  CAS  PubMed  Google Scholar 

  • Kullo IJ, Ding K, Boerwinkle E, Turner ST, Mosley TH Jr, Kardia SL, et al. 2006. Novel genomic loci influencing plasma homocysteine levels. Stroke 37: 1703–1709.

    Article  CAS  PubMed  Google Scholar 

  • Laraqui A, Allami A, Carrié A, Raisonnier A, Coiffard AS, Benkouka F, et al. 2007. Relation between plasma homocysteine, gene polymorphisms of homocysteine metabolism-related enzymes, and angiographically proven coronary artery disease. Eur J Int Med 18: 474–483.

    Article  CAS  Google Scholar 

  • Lehmann M, Gottfries CG, Regland B, 1999. Identification of cognitive impairment in the elderly: homocysteine is an early marker. Dement Geriatr Cogn Disord 10: 12–20.

    Article  CAS  PubMed  Google Scholar 

  • Lentz SR, Sadler JE, 1991. Inhibition of thrombomodulin surface expression and protein C activation by the thrombogenic agent homocysteine. J Clin Invest 88: 1906–1914.

    Article  CAS  PubMed  Google Scholar 

  • Lentz SR, Sobey CG, Piegors DJ, Bhopatkar MY, Faraci FM, Malinow MR, et al. 1996. Vascular dysfunction in monkeys with diet-induced hyper-homocyst(e)inenia. J Clin Invest 98: 24–29.

    Article  CAS  PubMed  Google Scholar 

  • Lentz SR, 2005. Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost 3: 1646–1654.

    Article  CAS  PubMed  Google Scholar 

  • Leoncini G, Pascale R, Signorello MG, 2003. Effects of homocysteine on L-arginine transport and nitric oxide formation in human platelets. Eur J Clin Invest 33: 713–719.

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Sun L, Zhang H, Liao Y, Wang D, Zhao B, et al. 2003. Elevated plasma homocysteine was associated with hemorrhagic and ischemic stroke, but methylenetetrahydrofolate reductase gene C677T polymorphism was a risk factor for thrombotic stroke: a multicenter case-control study in China. Stroke 34: 2085–2090.

    Article  CAS  PubMed  Google Scholar 

  • Lopez OL, Jagust WJ, Dulberg C, Becker JT, DeKosky ST, Fitzpatrick A, et al. 2003. Risk factors for mild cognitive impairment in the Cardiovascular Health Study Cognition Study. Arch Neurol 60: 1394–1399.

    Article  PubMed  Google Scholar 

  • Majors A, Ehrhart L, Pezacka E, 1997. Homocysteine as a risk factor for vascular disease. Enhanced collagen production and accumulation by smooth muscle cells. Arterioscler Thromb Vasc Biol 17: 2074–2081.

    CAS  PubMed  Google Scholar 

  • Malinow M, Nieto F, Szklo M, Chambless L, Bond G, 1993. Carotid artery intimal-medial wall thickening and plasma homocyst(e)ine in asymptomatic adults. Circulation 87: 1107–1113.

    CAS  PubMed  Google Scholar 

  • McCaddon A, Davies G, Hudson P, Tandy S, Cattell H, 1998. Total serum homocysteine in senile dementia of Alzheimer type. Int J Geriatr Psychiatry 13: 235–239.

    Article  CAS  PubMed  Google Scholar 

  • McCaddon A, Hudson P, Davies G, Hughes A, Williams JH, Wilkinson C, et al. 2001. Homocysteine and cognitive decline in healthy elderly. Dement Geriatr Cogn Disord 12: 309–313.

    Article  CAS  PubMed  Google Scholar 

  • McCully KS, 1969. Vascular pathology of homo-cysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 56: 111–128.

    CAS  PubMed  Google Scholar 

  • McCully KS, Ragsdale BD, 1970. Production of arteriosclerosis by homocysteinemia. Am J Pathol 61: 1–11.

    CAS  PubMed  Google Scholar 

  • McCully KS, Wilson RB, 1975. Homocysteine theory of arteriosclerosis. Atherosclerosis 22: 215–227.

    Article  CAS  PubMed  Google Scholar 

  • Moat SJ, Lang D, McDowell IF, Clarke ZL, Madhavan AK, Lewis MJ, et al. 2004. Folate, homocysteine, endothelial function and cardiovascular disease. J Nutr Biochem 15: 64–79.

    Article  CAS  PubMed  Google Scholar 

  • Morita H, Kurihara H, Tsubaki S, Sugiyama T, Hamada C, Kurihara Y, et al. 1998. Methylenetetrahydrofolate reductase gene polymorphism and ischemic stroke in Japanese. Arterioscler Thromb Vasc Biol 18: 1465–1469.

    CAS  PubMed  Google Scholar 

  • Mudd SH, Levy HL, Skovby F, 1995. Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic Basis of Inherited Disease. 7th ed. New York, NY: McGraw-Hill 1279–1327.

    Google Scholar 

  • Mudd SH, Levy HL, Kraus J, 2001. Disorders of Transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler K, Vogelstein B, eds. The metabolic and molecular bases of inherited diseases. Mc Grow Hill 2007–2056.

  • Nishinaga M, Ozawa T, Shimada K, 1993. Homocysteine, a thrombogenic agent, suppresses anticoagulant heparan sulfate expression in cultured porcine aortic endothelial cells. J Clin Invest 92: 1381–1386.

    Article  CAS  PubMed  Google Scholar 

  • Nygard O, Refsum H, Ueland PM, Stensvold I, Nordrehaug JE, Kvĺle G, et al. 1997a. Coffee consumption and total plasma homocysteine: the Hordland Homocysteine Study. Am J Clin Nutr 65: 136–143.

    CAS  PubMed  Google Scholar 

  • Nygard O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE, et al. 1997b. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 1337: 230–236.

    Article  Google Scholar 

  • Nygard O, Refsum H, Ueland PM, Vollset SE, 1998. Major lifestyle determinants of plasma total homocysteine distribution: the Hordland Homocysteine Study. Am J Clin Nutr 67: 263–270.

    CAS  PubMed  Google Scholar 

  • Nurk E, Tell GS, Vollset SE, Nygĺrd O, Refsum H, Ueland PM, et al. 2002. Plasma total homocysteine and hospitalizations for cardiovascular disease: the Hordaland Homocysteine Study. Arch Intern Med 162: 1374–1381.

    Article  PubMed  Google Scholar 

  • Oikawa S, Murakami K, Kawanishi S, 2003. Oxidative damage to cellular and isolated DNA by homocysteine: implications for carcinogenesis. Oncogene 22: 3530–3538.

    Article  CAS  PubMed  Google Scholar 

  • Olivieri O, Friso S, Trabetti E, Girelli D, Pizzolo F, Faccini G, et al. 2001. Homocysteine and atheromatous renal artery stenosis. Clin Exp Med 1: 211–218.

    Article  CAS  PubMed  Google Scholar 

  • Papa A, De Stefano V, Danese S, Chiusolo P, Persichilli S, Casorelli I, et al. 2001. Hyperhomo-cysteinemia and prevalence of polymorphisms of homocysteine metabolism-related enzymes in patients with inflammatory bowel disease. Am J Gastroenterol 96: 2677–2682.

    Article  CAS  PubMed  Google Scholar 

  • Perry IJ, Refsum H, Morris RW, Ebrahim SB, Ueland PM, Shaper AG, 1995. Prospective study of serum total homocysteine concentration and risk of stroke in middle-age British men. Lancet 346: 1395–1398.

    Article  CAS  PubMed  Google Scholar 

  • Pezzini A, Del Zotto E, Archetti S, Negrini R, Bani P, Albertini A, et al. 2002. Plasma homocysteine concentration, C677T MTHFR genotype, and 844ins68bp CBS genotype in young adults with spontaneous cervical artery dissection and atherothrombotic stroke. Stroke 33: 664–669.

    Article  CAS  PubMed  Google Scholar 

  • Pezzini A, Grassi M, Del Zotto E, Archetti S, Spezi R, Vergani V, et al. 2005. Cumulative effect of predisposing genotypes and their interaction with modifiable factors on the risk of ischemic stroke in young adults. Stroke 36: 533–539.

    Article  CAS  PubMed  Google Scholar 

  • Pizzolo F, Friso S, Olivieri O, Martinelli N, Bozzini C, Guarini P, et al. 2006. Homocysteine, traditional risk factors and impaired renal function in coronary artery disease. Eur J Clin Invest 36: 698–704.

    Article  CAS  PubMed  Google Scholar 

  • Poddar R, Sivasubramanian N, Dibello PM, Robinson K, Jacobsen DW, 2001. Homocysteine induces expression secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells: implications for vascular disease. Circulation 103: 2717–2723.

    CAS  PubMed  Google Scholar 

  • Ratnoff OD, 1968. Activation of Hageman factor by L-homocystine. Science 162: 1007–1009.

    Article  CAS  PubMed  Google Scholar 

  • Reed T, Malinow MR, Christian JC, Upson B, 1991. Estimates of heritability of plasma homocyst(e)ine levels in aging adult male twins. Clin Genet 39: 425–428.

    Article  CAS  PubMed  Google Scholar 

  • Refsum H, Ueland PM, Nygard O, Vollset SE, 1998. Homocysteine and cardiovascular disease. Annu Rev Med 49: 31–62.

    Article  CAS  PubMed  Google Scholar 

  • Rezvani I, 2002. Metionina. in Nelson: Trattato di Pediatria. Edizioni Minerva Medica XVI Ed. X-82.3: 350–352.

    Google Scholar 

  • Robinson K, Mayer EL, Miller DP, Green R, van Lente F, Gupta A, et al. 1995. Hyperhomocysteinemia and low pyridoxal phosphate. Common and independent reversible risk factors for coronary artery disease. Circulation 92: 2825–2830.

    CAS  PubMed  Google Scholar 

  • Rodgers G, Conn M, 1990. Homocysteine, an atherogenic stimulus, reduces protein C activation by arterial and venous endothelial cells. Blood 75: 895–901.

    CAS  PubMed  Google Scholar 

  • Ross R, 1999. Atherosclerosis: an inflammatory disease. N Engl J Med 340: 115–126.

    Article  CAS  PubMed  Google Scholar 

  • Rozen R, 1997. Genetic predisposition to hyperhomocysteinemia: deficiency of methylenetetra-hydrofolate reductase (MTHFR). Thromb Haemost 77: 523–526.

    Google Scholar 

  • Rozen R, 2000. Genetic modulation of homo-cysteinemia. Semin Thromb Hemost 26: 255–261.

    Article  CAS  PubMed  Google Scholar 

  • Sacher Y, Soroker N, Motin M, Treger I, Ring H, Sela BA, et al. 2003. Blood homocysteine levels in stroke patients undergoing rehabilitation. Med Sci Monit 9: CR201–207.

    PubMed  Google Scholar 

  • Salomon O, Steinberg DM, Zivelin A, Gitel S, Dardik R, Rosenberg N, et al. 1999. Single and combined prothrombotic factors in patients with idiopathic venous thromboembolism: prevalence and risk assessment. Arterioscler Thromb Vasc Biol 19: 511–518.

    CAS  PubMed  Google Scholar 

  • Sazci A, Ergul E, Tuncer N, Akpinar G, Kara I, 2006. Methylenetetrahydrofolate reductase gene polymorphisms are associated with ischemic and hemorrhagic stroke: dual effect of MTHFR polymorphisms C677T and A1298C. Brain Res Bull 71: 45–50.

    Article  CAS  PubMed  Google Scholar 

  • Scher AI, Terwindt GM, Picavet HS, Verschuren WM, Ferrari MD, Launer LJ, 2005. Cardiovascular risk factors and migraine: the GEM population-based study. Neurology 64: 614–620.

    CAS  PubMed  Google Scholar 

  • Scher AI, Terwindt GM, Verschuren WM, Kruit MC, Blom HJ, Kowa H, et al. 2006. Migraine and MTHFR C677T genotype in a population-based sample. Ann Neurol 59: 372–375.

    Article  CAS  PubMed  Google Scholar 

  • Schneider JA, Rees DC, Liu YT, Clegg JB, 1998. Worldwide distribution of a common methylenetetrahydrofolate reductase mutation. Am J Hum Genet 62: 1258–1260.

    Article  CAS  PubMed  Google Scholar 

  • Schnyder G, Roffi M, Flammer Y, Pin R, Hess OM, 2002. Association of plasma homocysteine with restenosis after percutaneous coronary angioplasty. Eur Heart J 23: 726–733.

    Article  CAS  PubMed  Google Scholar 

  • Selhub J, Jacques PF, Bostom AG, D’Agostino RB, Wilson PW, Belanger AJ, et al. 1995. Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. N Engl J Med 332: 286–291.

    Article  CAS  PubMed  Google Scholar 

  • Sengul E, Cetinarslan B, Tarku I, Canturk Z, Turemen E, 2004. Homocysteine concentrations in subclinical hypothyroidism. Endocr Res 3: 351–359.

    Article  CAS  Google Scholar 

  • Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, et al. 2002. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346: 476–483.

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Senthilkumar RD, Brahmachari V, Sundaramoorthy E, Mahajan A, Sharma A, et al. 2006. Mining literature for a comprehensive pathway analysis: a case study for retrieval of homocysteine related genes for genetic and epigenetic studies. Lipids Health Dis 5: 1.

    Article  PubMed  Google Scholar 

  • Singal R, Ferdinand L, Das PM, Reis IM, Schlesselman JJ, et al. 2004. Polymorphisms in the methylenetetrahydrofolate reductase gene and prostate cancer risk. Int J Oncol 25: 1465–1471.

    CAS  PubMed  Google Scholar 

  • Soriente L, Coppola A, Madonna P, Cerbone AM, Di Minno G, Orefice G, et al. 1998. Homozygous C677T mutation of the 5,10-methyl-enetetrahydrofolate reductase gene and hyperhomocysteinemia in Italian patients with a history of early-onset ischemic stroke. Stroke 29: 869–871.

    CAS  PubMed  Google Scholar 

  • Spence JD, Bang H, Chambless LE, Stampfer MJ, 2005. Vitamin Intervention For Stroke Prevention trial: an efficacy analysis. Stroke 36: 2404–2409.

    Article  CAS  PubMed  Google Scholar 

  • Stamler JS, Loscallzo J, 1992. Endothelium-derived relaxing factor modulates the atherothrombogenic effects of homocysteine. J Cardiol Pharmacol 20 suppl 12:s 202–204.

    Google Scholar 

  • Stamler JS, Osborne JA, Jaraki O, Rabbani LE, Mullins M, Singel D, et al. 1993. Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin Invest 91: 308–318.

    Article  CAS  PubMed  Google Scholar 

  • Stampfer MJ, Malinow MR, Willett WC, Newcomer LM, Upson B, Ullmann D, et al. 1992. A prospective study of plasma homocysteine and risk of myocardial infarction in US physicians. JAMA 268: 877–881.

    Article  CAS  PubMed  Google Scholar 

  • Starkekbaum G, Harlan J, 1986. Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine. J Clin Invest 77: 1370–1376.

    Article  Google Scholar 

  • Stubbs PJ, Al-Obaidi MK, Conroy RM, Collinson PO, Graham IM, Noble IM, et al. 2000. Effect of plasma homocysteine concentration on early and late events in patients with acute coronary syndromes. Circulation 102: 605–610.

    CAS  PubMed  Google Scholar 

  • Stühlinger MC, Oka RK, Graf EE, Schmölzer I, Upson BM, Kapoor O, et al. 2003. Endothelial dysfunction induced by hyperhomocyst(e)inemia: role of asymmetric dimethylarginine. Circulation 108: 933–938.

    Article  PubMed  CAS  Google Scholar 

  • Su SJ, Huang LW, Pai LS, Liu HW, Chang KL, 2005. Homocysteine at pathophysiological concentrations activates human monocyte and induces cytokine expression and inhibits macrophage migration inhibitory factor expression. Nutrition 21: 994–1002.

    Article  CAS  PubMed  Google Scholar 

  • Szczeklik A, Sanak M, Jankowski M, Dropiński J, Czachór R, Musiał J, et al. 2001. Mutation A1298C methylenetetrahydrofolate reductase: risk for early coronary disease not associated with hyperhomocysteinemia. Am J Med Genet 101: 36–39.

    Article  CAS  PubMed  Google Scholar 

  • Szolnoki Z, Somogyvari F, Szabo M, Kondacs A, Fodor L, Melegh B, 2006. Interactions between theMTHFR C677T andMTHFR A1298C mutations in ischaemic stroke, Ideggyogy Sz 59: 107–112.

    PubMed  Google Scholar 

  • Tosetto A, Rodeghiero F, Martinelli I, De Stefano V, Missiaglia E, Chiusolo P, et al. 1998. Additional genetic risk factors for venous thromboembolism in carriers of the factor V Leiden mutation. Br J Haematol 103: 871–876.

    Article  CAS  PubMed  Google Scholar 

  • Tsai JC, Perrella MA, Yoshizumi M, Hsieh CM, Haber E, Schlegel R, et al. 1994. Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci USA 91: 6369–6373.

    Article  CAS  PubMed  Google Scholar 

  • Ubbink JB, Fehily AM, Pickering J, Elwood PC, Vermaak WJ, 1998. Homocysteine and ischaemic heart disease in the Caerphilly cohort. Atherosclerosis 140: 349–356.

    Article  CAS  PubMed  Google Scholar 

  • Ueland PM, Refsum H, Brattström L, 1992. Plasma homocysteine and cardiovascular disease. In: Francis RB Jr, ed. Atherosclerotic cardiovascular disease, hemostasis and endothelial function. New York, NY: Marcel Dekker Inc 183–236.

    Google Scholar 

  • Ueland PM, Refsum H, Beresford SAA, Vollset SE, 2000. The controversy over homocysteine and cardiovascular risk. Am J Clin Nutr 72: 324–332.

    CAS  PubMed  Google Scholar 

  • Ueland PM, Nygard O, Vollset SE, Refsum H, 2001. The Hordaland Homocysteine Studies. Lipids 36 Suppl: S33–39.

    Article  CAS  PubMed  Google Scholar 

  • Upchurch GJ, Welch G, Loscalzo J, 1996. Homocysteine EDRF and endothelial function. J Nutr 126: 1290S-1294S.

    CAS  PubMed  Google Scholar 

  • Upchurch GR Jr, Welch GN, Fabian AJ, Freedman JE, Johnson JL, Keaney JF Jr, et al. 1997. Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 272: 17012–17017.

    Article  CAS  PubMed  Google Scholar 

  • van der Gaag MS, Ubbink JB, Sillanaukee P, Nikkari S, Hendriks HF, 2000. Effect of consumption of red wine, spirits, and beer on serum homocysteine. Lancet 355: 1522.

    Article  Google Scholar 

  • van der Put NM, Gabreëls F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, et al. 1998. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 62: 1044–1051.

    Article  Google Scholar 

  • Visioli F, Smith A, Zhang W, Keaney JF Jr, Hagen T, Frei B, et al. 2002. Lipoic acid and vitamin C potentiate nitric oxide synthesis in human aortic endothelial cells independently of cellular glutathione status. Redox Rep 7: 223–227.

    Article  CAS  PubMed  Google Scholar 

  • Vollset SE, Refsum H, Tverdal A, Nygard O, Nordrehaug JE, Tell GS, et al. 2001. Plasma total homocysteine and cardiovascular and non-cardiovascular mortality: the Hordaland Homocysteine Study. Am J Clin Nutr 74: 130–136.

    CAS  PubMed  Google Scholar 

  • Voutilainen S, Alfthan G, Nyyssonen K, Salonen R, Salonen J, 1998. Association between elevated plasma total homocysteine and increased common carotid artery wall thickness. Ann Med 30: 300–306.

    Article  CAS  PubMed  Google Scholar 

  • Wald DS, Law M, Morris JK, 2002. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325: 1202–206.

    Article  PubMed  Google Scholar 

  • Wanby P, Brattstrom L, Brudin L, Hultberg B, Teerlink T, 2003. Asymmetric dimethylarginine and total homocysteine in plasma after oral methionine loading. Scand J Clin Lab Invest 63: 347–353.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Yoshizumi M, Lai K, Tsai JC, Perrella MA, Haber E, et al. 1997. Inhibition of growth and p21ras methylation in vascular endothelial cells by homocysteine but not cysteine. J Biol Chem 272: 25380–25385.

    Article  CAS  PubMed  Google Scholar 

  • Wang G, O K, 2001. Homocysteine stimulates the expression of monocyte chemoattractant protein-1 receptor (CCR2) in human monocytes: possible involvement of oxygen-free radicals. Biochem J 357: 233–240.

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Siow YL, O K, 2001. Homocysteine induces monocyte chemoattractant protein-1 expression by activating NF-kappa B in THP-1 macrophages. Am J Physiol Heart Circ Physiol 280: H2840–2847.

    CAS  PubMed  Google Scholar 

  • Welch GN, Upchurch GR Jr, Loscalzo J, 1997. Homocysteine, oxidative stress and vascular disease. Hosp Pract (Minneap) 32: 81–82, 85, 88–92.

    CAS  Google Scholar 

  • Wilcken DE, Wilcken B, 1976. The pathogenesis of coronary artery disease. A possible role for methionine metabolism. J Clin Invest 57: 1079–1082.

    Article  CAS  PubMed  Google Scholar 

  • Wu LL, Wu J, Hunt SC, James BC, Vincent GM, Williams RR, et al. 1994. Plasma homocyst(e)ine as a risk factor for early familial coronary artery disease. Clin Chem 40: 552–561.

    CAS  PubMed  Google Scholar 

  • Wu LL, Wu JT, 2002. Hyperhomocysteinemia is a risk factor for cancer and a new potential tumor marker. Clin Chim Acta 322: 21–28.

    Article  CAS  PubMed  Google Scholar 

  • Zetterberg H, Rymo L, Coppola A, D’Angelo A, Spandidos DA, Blennow K, 2002.MTHFR C677T and A1298C polymorphisms and mutated sequences occurring in cis. Eur J Hum Genet 10: 579–582.

    Article  CAS  Google Scholar 

  • Zetterberg H, Coppala A, D’Angelo A, Palmér M, Rymo L, Blennow K, 2003. No association between theMTHFR A1298C and transcobalamin C776G genetic polymorphisms and hyper-homocysteinemia in thrombotic disease. Thromb Res 108: 127–131.

    Article  CAS  Google Scholar 

  • Zhu BT, 2003. Medical hypothesis: hyperhomocysteinemia is a risk factor for estrogen-induced hormonal cancer. Int J Oncol 22: 499–508.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Trabetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trabetti, E. Homocysteine,MTHFR gene polymorphisms, and cardio-cerebrovascular risk. J Appl Genet 49, 267–282 (2008). https://doi.org/10.1007/BF03195624

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195624

Keywords

Navigation