Skip to main content
Log in

Allozyme variability and differentiation in Serbian roe deer populationsCapreolus capreolus

  • Published:
Acta Theriologica Aims and scope Submit manuscript

Abstract

The present study investigates the genetic structure of 12 roe deerCapreolus capreolus Linnaeus, 1758 population samples from Serbia, by screening a total of 334 individuals. We examined whether genetic differentiation exists in local populations in Serbia, and addressed the question whether management policies may affect genetic structure. The populations were analysed by multilocus protein electrophoresis, with 33 protein loci examined. Screening of 20 enzymes and one group of general proteins revealed polymorphism at the following 12 loci: Sdh, Mdh-1, Me-1, Idh-2, 6-Pgd-1,αGpd, Ak, Pgm-1, Pgm-2, Ca, Mpi andGpi. Among samples, the proportion of polymorphic loci varied between 3–15.2% (mean 11.9%), while the average gene diversity was in the range of 1.1–4.2%. The overall genetic differentiation was low (θ = 0.03). The comparison of two regional population groups (northern-southern, separated by the Danube River) showed an absence of genetic differentiation between regions. Gene flow was estimated at 8.96 migrants per generation, and was higher in the lowland than in the highland group. Three loci (Ca, 6-Pgd andGpd-1) showed clinal variation along a geographical gradient. Additional five alleles of four loci (Ak, Pgm-1, Gpi, 6-Pgd) showed significant spatial autocorrelation. Genetic distances were small (D = 0–0.004). Northern and southern populations clustered separately. For at least three populations game management practices provide evidence for outlying genetic parameters. The observed heterogeneity in the inbreeding level was deemed more under the influence of non-random mating strengthened by game management, than by overall selective pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archie J. W. 1985. Statistical analysis of heterozygosity data: independent sample comparisons. Evolution 39: 623–637.

    Article  Google Scholar 

  • Ayala F., Powell J. R., Tracey M. L., Mourao C. A. and Parez-Salas S. 1972. Enzyme variability in theDrosophila willistoni group. IV. Genetic variation in natural populations ofDrosophila willistoni. Genetics 70: 113–139.

    CAS  PubMed  Google Scholar 

  • Baccus R., Ryman N., Smith M. H., Reuterwall C. and Cameron D. 1983. Genetic variability and differentiation of large grazing mammals. Journal of Mammalogy 64: 109–120.

    Article  Google Scholar 

  • Chapuisat M., Goudet J. and Keller L. 1997. Microsatellites reveal high population viscosity and limited dispersal in the antFormica paralugubris. Evolution 51: 475–482.

    Article  Google Scholar 

  • Ernhaft J. 1995. Populationgenetishe Untersuchungen an der Wildtiern für die Vorberitung der Genkonservation. Vadbiológia 4: 48–53.

    Google Scholar 

  • Ernhaft J. 1996. Comparative population-genetical studies in four deer populations in Hungary. Vadbiológia 5: 24–28.

    Google Scholar 

  • Fakler P. and Schreiber A. 1997. Allozyme heterozygosity in two isolated populations of roe deer (Capreolus capreolus) in the Netherlands. Netherlands Journal of Zoology 47: 1–8.

    Article  Google Scholar 

  • Felsenstein J. 2004. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle.

    Google Scholar 

  • Gonzales-Candelas F., Crnobrnja J., Kalezić L. M. and Moya A. 1992. Gene flow rates in Yugoslavia populations of the smooth newtTriturus vulgaris. Journal of Evolutionary Biolology 5: 481–490.

    Article  Google Scholar 

  • Goudet J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html.

  • Hamilton W. D. 1971. Selection of selfish and altruistic behaviour in some extreme models. [In: Man and beast: Comparative social behavior. J. F. Eisenberg and W. S. Dillon, eds] Smithsonian Inst. Press, Wash, DC: 57–91.

    Google Scholar 

  • Hartl G. B. and Reimoser F. 1988. Biochemical variation in roe deer (Capreolus capreolus L.): Arer-strategists among deer genetically less variable than K-strategists? Heredity 60: 221 - 227.

    Article  PubMed  Google Scholar 

  • Hartl G. B., Reimoser F., Willing R. and Koller J. 1991. Genetic variability and differentiation in the roe deer (Capreolus capreolus L.) of Central Europe. Génétique Sélection Évolution 23: 281 - 299.

    Article  Google Scholar 

  • Hartl G. B., Markov G., Rubin A., Findo S., Lang G. and Willing R. 1993. Allozyme diversity within and among populations of three ungulate species (Cervus elaphus, Capreolus capreolus, Sus scrofa) of Southeastern and Central Europe. Zeitschrift für Säugtierkunde 58: 352–361.

    Google Scholar 

  • Hartl G. B., Hewison M. A. J., Apollonio M., Kurt F. and Wiehler J. 1998. Genetics of European roe deer. [In: The European roe deer: The biology of success. R. Andersen, P. Duncan and J. D. C. Linnell, eds]. Scandinavian University Press, Oslo: 71–90.

    Google Scholar 

  • Hewison A. J. M. 1995. Isozyme variation in roe deer in relation to their population history in Britain. Journal of Zoology, London 235: 279–288.

    Article  Google Scholar 

  • Kurt F., Hartl G. B. and Volk F. 1993. Breeding strategies and genetic variation in European roe deerCapreolus capreolus populations. Acta Theriologica 38, Suppl. 2: 187–194.

    Google Scholar 

  • Levene H. 1949. On a matching problem arising in genetics. Annual Mathematics and Statistics 20: 91–94.

    Article  Google Scholar 

  • Lorenzini R., Patalano M., Apollonio M. and Mazzarone V. 1993. Genetic variability of roe deer (Capreolus capreolus) in Italy: electrophoretic survey on populations of different origin. Acta Theriologica 38, Suppl. 2: 141–151.

    Google Scholar 

  • Lorenzini R., Matiolli L., Rustioni M. and Patalano M. 1996. Allozyme and craniometric variability in the Roe deer (Capreolus capreolus L.) from Central Italy. Zeitschrift für Säugetierkunde 61: 7–24.

    Google Scholar 

  • Lorenzini R., Burrini L., Mazzoni della Stella R. 1997. Biochemical genetic differentiation in some roe deer populations of Tuscany, central Italy. Italian Journal of Zoology 64: 239–244.

    Article  CAS  Google Scholar 

  • Markov G. G. and Chassovnikarova T. 1998. Genetic variability of the roe deer (Capreolus capreolus L.) in Bulgaria — RFLP analysis of the mtDNA. Dokladi na Blgarska Akademia na Naukite 51(7–8): 91–93.

    CAS  Google Scholar 

  • Milošević-Zlatanović S. 2001. [Zoogeographical and population differentiation on the roe deer (Capreolus capreolus L.) from Yugoslavia]. PhD thesis, University of Belgrade: 1–205. [In Serbian]

  • Milošević-Zlatanović S., Savić R. I. and Stamenković S. 1994. Genetic divergence in the roe deer (Capreolus capreolus L.) in Yugoslavia. Bios 2: 307–314.

    Google Scholar 

  • Milošević-Zlatanović S., Crnobrnja-Isailović J., Savić R. I. and Stamenković S. 1997. Genetic variability of roe deer populations (Capreolus capreolus L.) from northeast Yugoslavia. Zeitschrift für Säugetierkunde 62: 339–349.

    Google Scholar 

  • Milošević-Zlatanović S., Ćeranić A. and Stamenković S. 2003. Ecogeographic constraints in current game management of the roe deer (Capreolus capreolus L.) in Serbia. XXVI. International Congres of IUGB, Braga, Portugal, Abstracts: 72.

  • Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    CAS  PubMed  Google Scholar 

  • Pamilo P. 1984. Genotypic correlation and regression in social groups: multiple alleles, multiple loci and subdivided populations. Genetics 107: 307–320.

    CAS  PubMed  Google Scholar 

  • Pamilo P. 1985. Effect of inbreeding on genetic relatedness. Hereditas 103: 195–200.

    Article  CAS  PubMed  Google Scholar 

  • Queller D. C. and Goodnight K. F. 1989. Estimating relatedness using genetic markers. Evolution 42: 258–275.

    Article  Google Scholar 

  • Randi E., Alves P. C., Carranza J., Miloševic-Zlatanović S., Sfougaris A. and Mucci N. 2004. Phylogeography of roe deer (Capreolus capreolus) populations: the effects of hystorical genetic subdivisions and recent nonequilibrium dynamics. Molecular Ecology 13: 3071–3083.

    Article  CAS  PubMed  Google Scholar 

  • Rohlf F. J. 1998. NTSYS pc 2.02, user guide. Exeter software, New York.

    Google Scholar 

  • Ryman N., Beckman G., Bruun-Petersen G. and Reuterwall C. 1977. Variability of red cell enzymes and genetic implications of management policies in Scandinavian moose (Alces alces). Hereditas 85: 157–162.

    Article  Google Scholar 

  • Ryman N., Baccus R., Reuterwall C. and Smith M. H. 1980. Effective population size generation interval and potential loss of genetic variability in game species under different hunting regimes. Oikos 36: 257–266.

    Article  Google Scholar 

  • Schreiber A., Kolter L. and Kaumanns W. 1993. Conserving patterns of genetic diversity in endangered mammals by captive breeding. Acta Theriologica 38, Suppl. 2: 71–88.

    Google Scholar 

  • Simon C. and Archie J. 1985. An empirical demonstration of the lability of heterozygosity estimates. Evolution 39: 463–467.

    Article  Google Scholar 

  • Smith H. M., Branan W. V., Marchinton R. L., Johns P. E. and Wooten M. C. 1986. Genetic and morphologic comparisons of red brocket, brown brocket and white-tailed deer. Journal of Mammalogy 67: 103–111.

    Article  Google Scholar 

  • Sneath P. H. and Sokal R. R. 1973. Numerical Taxonomy: the principles and practice of numerical classification. San Francisco: Freeman and Co.: 1–573.

    Google Scholar 

  • Sokal R. R. and Oden N. L. 1978a. Spatial autocorrelation in biology. I. Methodology. Biological Journal of Linnean Society 10: 199–228.

    Article  Google Scholar 

  • Sokal R. R. and Oden N. L. 1978b. Spatial autocorrelation in biology. II. Some biological implications and four applications of evolutionary and ecological interest. Biological Journal of Linnean Society 10: 229–249.

    Article  Google Scholar 

  • Sokolov V. E., Shurkal V., Danilikin A. A., Podogas A. V., Rakitskaya T. A. and Markov G. 1986. [A comaprative analysis of electrophoretic spectra of blood and muscle-tissue proteins of European (Capreolus capreolus L.) and Siberian (Capreolus pyrargus Pall.) roe deer]. Proceedings of Academy of Sciences USSR (Biological Sciences) 288: 391–393. [In Russian]

    Google Scholar 

  • Swofford D. L. and Selander R. B. 1981. Biosys 1. A Fortran program for the comprehensive analysis of electrophoretic data in population genetics and systematics. Journal of Heredity 72: 281–283.

    Google Scholar 

  • Šelmić V. 2001. [A program for hunting development in Serbia 2001–2010]. Hunting association of Serbia, Belgrade: 1–241. [In Serbian]

    Google Scholar 

  • Wang M. and Schreiber A. 2001. The impact of habitat fragmentation and social structure on the population genetics of roe deer (Capreolus capreolus L.) in Central Europe. Heredity 86: 703–715.

    Article  CAS  PubMed  Google Scholar 

  • Wartenberg D. 1989. SAAP. Version 4.3. Manual. Piscataway, NJ.

  • Wehner von J., Muller H. P. and Kierdorf H. 1991. Investigation of the genetic situation of select Rhineland deer populations with special consideration of changes due to isolation. Zeitschrift fur Jagdwissenschaft 37: 40–48.

    Article  Google Scholar 

  • Weir B. S. and Cockerham C. C. 1984. EstimatingF-statistics for the analysis of population structure. Evolution 38: 1358–1370.

    Article  Google Scholar 

  • Wiehler J. and Tiedemann R. 1998. Phylogeography of the European roe deerCapreolus capreolus as revealed by sequence analysis of the mitochondrial control region. Acta Theriologica, Suppl. 5: 187–197.

    Google Scholar 

  • Wright S. 1978. Evolution and genetics of populations. Vol. 4. Variability within and among natural populations. Univ. Chicago Press, Chicago, Illinois: 1–580.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Associate Editor was Krzysztof Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milošević-Zlatanović, S., Crnobrnja-Isailović, J. & Stamenković, S. Allozyme variability and differentiation in Serbian roe deer populationsCapreolus capreolus . Acta Theriol 50, 429–444 (2005). https://doi.org/10.1007/BF03192637

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03192637

Key words

Navigation