Skip to main content
Log in

The role of positron emission tomography in the discovery and development of new drugs; As studied in laboratory animals

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

Drug discovery and development is time consuming and a costly procedure. The challenges for the pharmaceutical industry range from the evaluation of potential new drug candidates, the determination of drug pharmacokinetics/pharmacodynamics, the measurement of receptor occupancy as a determinant of drug efficacy, and the pharmacological characterisation of mechanisms of action. Positron emission tomography (PET) is a powerful quantitative imaging technique for looking at biochemical pathways, molecular interactions, drug pharmacokinetics and pharmacodynamics. Recent advances in emission tomography, particularly the development of small animal PET scanners, image reconstruction and animal models of disease have led to the development of extremely sensitive and specific tools for imaging biochemical processes in vivo, therefore representing a new means of providing information for drug development and evaluation. Many human genes have a related mouse gene, allowing mice to be used as a platform for mimicking human disease, using knock-out and knock-in gene technology. Consequently PET imaging of rodents is emerging as a cost effective means of screening new pharmaceuticals and decreasing the time required for new drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell, B. (1995) Drug development and positron emission tomography in PET for drug development and evaluation (Comar, D., ed) pp. 1–24, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  2. Phelps, M. (2000): Positron emission tomography provides molecular imaging of biological processes., Proc. Natl. Acad. Sci. USA. 97, 9226–9233.

    Article  CAS  PubMed  Google Scholar 

  3. Herschman, H. (2003): Molecular imaging: looking at problems, seeing solutions. Science. 302, 605–608.

    Article  CAS  PubMed  Google Scholar 

  4. Czernin, J., & Phelps, M. (2002): Positron emission tomography scanning: current and future applications., Ann. Rev. Med., 53, 89–112.

    Article  CAS  PubMed  Google Scholar 

  5. Buck, A., Schirrmeister, H., Hetzel, M., Von Der Heide, M., Halter, G., Mattfeldt, T., Liewald, F., Reske, S., & Neumaier, B. (2002): 3-Deoxy-3-[18F]fluorothymidine positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules., Cancer Res., 62, 3331–3334.

    CAS  PubMed  Google Scholar 

  6. Vesselle, H., Grierson, J., Muzi, M., Pugsley, J., Schmidt, R., Rabinowitz, P., Peterson, L., Vallieres, E., & Wood, D. (2002): In vivo validation of 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT) uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lund tumours., Clin. Cancer Res., 8, 3315–23.

    CAS  PubMed  Google Scholar 

  7. Halldin, C., Gulyas, B., & Farde, L. (2001): PET studies with carbon-11 radioligands in neuropsychopharmacological drug development., Curr. Pharm. Des., 7, 1907–1929.

    Article  CAS  PubMed  Google Scholar 

  8. Maziere, B., & Loc’h, C. (2001): Using bromine-76 and iodine-123 radiohalogenated tracers in the drug development process., Curr. Pharm. Des., 7, 1931–1943.

    Article  CAS  PubMed  Google Scholar 

  9. Brady, F., Luthra, S., Brown, G., Osam, S., Aboagye, E., Saleem, A. & Price, P. (2001): Radiolabelled tracers and anticancer drugs for assessment of therapeutic efficacy using PET., Curr. Pharm. Des., 7, 1863–1892.

    Article  CAS  PubMed  Google Scholar 

  10. Hume, S. P., Brown, D., Ashworth, S., Hirani, E., Luthra, S. & Lammertsma, A. (1997): In vivo saturation kinetics of two dopamine transporter probes measured using a small animal scanner., J. Neurosci. Methods. 76, 45–51.

    Article  CAS  PubMed  Google Scholar 

  11. Chatziioannou, A. F. (2002): Molecular imaging of small animals with dedicated PET tomographs, Eur J Nucl Med Mol Imaging. 29, 98–114.

    Article  PubMed  Google Scholar 

  12. Myers, R., & Hume, S. P. (2002): Small animal PET, European Neuropsychopharmacology. 12, 545–555.

    Article  CAS  PubMed  Google Scholar 

  13. Del Guerra, A., & Belcari, N. (2002): Advances in animal PET scanners, Q. J. Nucl. Med., 46, 35–47.

    PubMed  Google Scholar 

  14. Cherry, S. (1994): Recent advances in instrumentation for positron emission tomography., Nucl. Instr. & Methods in Phys. Res A., 348, 577–582.

    Article  CAS  Google Scholar 

  15. Chatziioannou, A. F., Cherry, S., Shao, Y., Silverman, R., Meadors, K., Farquhar, T., Pedarsani, M., & Phelps, M. (1999): Performance evaluation of microPET: A high resolution lutetium oxyorthosilicate PET scanner for animal imaging., J. Nucl. Med., 40, 1164–1175.

    CAS  PubMed  Google Scholar 

  16. DeJesus, O., Murali, D., Flores, L., Converse, A., Dick, D., Oaks, T., Roberts, A., & Nickles, R. (2003): Synthesis of [F-18]ZD1839 as a PET imaging agent for epidermal growth factor receptors., J. Labelled Comp. Radiopharm., 46, S1.

    Article  Google Scholar 

  17. Haubner, R., Wester, H., Weber, W., Mang, C., Ziegler, S., Goodman, S., Senekowitsch-Schmidtke, R., Kessler, H., & Schwaiger, M. (2001): Noninvasiveimaging of αvβ3 integrin expression using18F-labeled RGB-containing glycopeptide and positron emission tomography., Cancer Res., 61, 1781–1785.

    CAS  PubMed  Google Scholar 

  18. Solomon, B., McArthur, G., Cuillinane, C., Zalcberg, J., & Hicks, R. (2003): Applications of positron emission tomography in the development of molecular targeted cancer therapeutics., Biodrugs. 17, 339–354.

    Article  CAS  PubMed  Google Scholar 

  19. Wiebe, L., & Knaus, E. (2001): Enzyme-targeted, nucleoside-based radiopharmaceuticals for scintigraphic monitoring of gene transfer and expression., Curr. Pharm. Des., 7, 1893–1906.

    Article  CAS  PubMed  Google Scholar 

  20. Phelps, M. (2000): PET: The merging of biology and imaging into molecular imaging., J. Nucl. Med., 41, 661–681.

    CAS  PubMed  Google Scholar 

  21. Tjuvajev, J., Avril, N., Oku, T., Sasajima, T., Miyagawa, T., Joshi, R., Safer, M., Beattie, B., DiResta, G., Daghighian, F., Augensen, F., Koutcher, J., Zweit, J., Humm, J., Larson, S., Finn, R., & Blasberg, R. (1998): Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography, Cancer Res., 58, 4333–4341.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roselt, P., Meikle, S. & Kassiou, M. The role of positron emission tomography in the discovery and development of new drugs; As studied in laboratory animals. European Journal of Drug Metabolism and Pharmacokinetics 29, 1–6 (2004). https://doi.org/10.1007/BF03190567

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190567

Keywords

Navigation