Skip to main content
Log in

β-Thalassaemia prototype of a single gene disorder with multiple phenotypes

  • Thalassemia and Hemoglobinopathy
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

As the defective genes for more and more genetic disorders become unravelled, it is clear that patients with the same genotype can have many different clinical conditions even in monogenic disorders. The remarkable phenotypic diversity of the βthalassaemias is prototypical of how the wide spectrum in disease severity can be generated. The most reliable and predictive factor of disease phenotype is the nature of the mutation at the β-globin locus itself. However, relating phenotype to genotype is complicated by the complex interaction of the environment and other genetic factors at the secondary and tertiary levels, some implicated, and others, as yet unidentified. This article reviews the clinical and haematological diversity encountered in βthalassaemia and their relationship with the under-lying genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weatherall DJ, Clegg JB, editors. The Thalassaemia Syndromes. 4th ed. Oxford: Blackwell Science; 2001.

    Google Scholar 

  2. Forget BG. Molecular Genetics of the Human Globin Genes. In: Steinberg MH, Forget BG, Higgs DR, Nagel RL, editors. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. Cambridge, UK: Cambridge University Press; 2001. p. 117–130.

    Google Scholar 

  3. Stamatoyannopoulos G. Molecular and Cellular Basis of Hemeoglobin Switching. In: Steinberg MH, Forget BG, Higgs DR, Nagel RL, editors. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. Cambridge, UK: Cambridge University Press; 2001. p. 131–145.

    Google Scholar 

  4. Schrier SL. Pathophysiology of thalassemia.Curr Opin Hematol. 2002;9:123–126.

    Article  PubMed  Google Scholar 

  5. Flint J, Harding RM, Boyce AJ, Clegg JB. The population genetics of the haemoglobinopathies. In: Rodgers GP, editor. Bailliére’s Clinical Haematology. London: Bailliere Tindall; 1998. p. 1–52.

    Google Scholar 

  6. Thein SL. Baillières Clinical Haematology: Beta thalassaemia in sickle cell disease and thalassaemia. In: Rodgers GP, editor. Sickle Cell Disease and Thalassaemia. London: Baillire Tindall; 1998. p. 91–126.

    Google Scholar 

  7. Viprakasit V, Gibbons RJ, Broughton BC, et al. Mutations in the general transcription factor TFIIH result in beta-thalassaemia in individuals with trichothiodystrophy.Hum Mol Genet. 2001;10:2797–2802.

    Article  PubMed  CAS  Google Scholar 

  8. Huisman THJ, Carver MFH, Efremov GD. A Syllabus of Human Hemoglobin Variants. 2nd ed. Augusta, GA, USA: The Sickle Cell Anemia Foundation; 1998.

    Google Scholar 

  9. Divoky V, Indrak K, Mrug M, Brabec V, Huisman THJ, Prchal JT. A novel mechanism of β thalassemia: the insertion of L1 retrotransposable element into β globin IVS II.Blood. 1996;88:148a.

    Google Scholar 

  10. Maquat LE. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells.RNA. 1995;1:453–465.

    PubMed  CAS  Google Scholar 

  11. Maquat LE, Carmichael GG. Quality control of mRNA function.Cell. 2001;104:173–176.

    Article  PubMed  CAS  Google Scholar 

  12. Rund D, Filon D, Strauss N, Rachmilewitz EA, Oppenheim A. Mean corpuscular volume of heterozygotes for β-thalassemia correlates with the severity of mutations.Blood. 1991;79:238–243.

    Google Scholar 

  13. Maragoudaki E, Kanavakis E, Trager-Synodinos J, et al. Molecular, haematological and clinical studies of the −101 C->T substitution in the β-globin gene promoter in 25 β-thalassaemia intermedia patients and 45 heterozygotes.Br J Haematol. 1999;107:699–706.

    Article  PubMed  CAS  Google Scholar 

  14. Ho PJ, Hall GW, Luo LY, Weatherall DJ, Thein SL. Beta thalassemia intermedia: is it possible to consistently predict phenotype from genotype?Br J Haematol. 1998;100:70–78.

    Article  PubMed  CAS  Google Scholar 

  15. Camaschella C, Maza U, Roetto A, et al. Genetic interactions in thalassemia intermedia: analysis of β-mutations, α-genotype, γ-promoters, and β- LCR hypersensitive sites 2 and 4 in Italian patients.Am J Hematol. 1995;48:82–87.

    PubMed  CAS  Google Scholar 

  16. Thein SL, Hesketh C, Wallace RB, Weatherall DJ. The molecular basis of thalassaemia major and thalassaemia intermedia in Asian Indians: application to prenatal diagnosis.Br J Haematol. 1988;70:225–231.

    Article  PubMed  CAS  Google Scholar 

  17. Craig JE, Kelly SJ, Barnetson R, Thein SL. Molecular characterization of a novel 10.3 kb deletion causing β-thalassaemia with unusually high Hb A2.Br J Haematol. 1992; 82:735–744.

    Article  PubMed  CAS  Google Scholar 

  18. Thein SL, Hesketh C, Taylor P, et al. Molecular basis for dominantly inherited inclusion body β-thalassemia. Proceedings of the National Academy of Sciences.USA. 1990;87:3924–3928.

    Article  CAS  Google Scholar 

  19. Thein SL. Dominant β thalassaemia: molecular basis and pathophysiology.Br J Haematol. 1992;80:273–277.

    Article  PubMed  CAS  Google Scholar 

  20. Thein SL. Is it dominantly inherited b thalassaemia or just a β-chain variant that is highly unstable?Br J Haematol. 1999;107:12–21.

    Article  PubMed  CAS  Google Scholar 

  21. Ho PJ, Wickramasinghe SN, Rees DC, Lee MJ, Eden A, Thein SL. Erythroblastic inclusions in dominantly inherited β thalassaemias.Blood. 1997;89:322–328.

    PubMed  CAS  Google Scholar 

  22. Hentze MW, Kulozik AE. A perfect message: RNA surveillance and nonsense-mediated decay.Cell. 1999;96:307–310.

    Article  PubMed  CAS  Google Scholar 

  23. Thein SL. Structural Variants with a b-Thalassemia Phenotype. In: Steinberg MH, Forget BG, Higgs DR, Nagel RL, editors. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. Cambridge, UK: Cambridge University Press, Cambridge, UK; 2001. p. 342–355.

    Google Scholar 

  24. Bunn HF, Forget BG. Hemoglobin: Molecular, Genetic and Clinical Aspects. Philadelphia, PA: W. B. Saunders Company, 1986.

    Google Scholar 

  25. Camaschella C, Kattamis AC, Petroni D, et al. Different hematological phenotypes caused by the interaction of triplicatted α-globin genes and heterozygous β-thalassemia.Am J Hematol. 1997;55:83–88.

    Article  PubMed  CAS  Google Scholar 

  26. Traeger-Synodinos J, Kanavakis E, Vrettou C, Maragoudaki E, Michael T, Metaxotou-Mavromati A. The triplicated α-globin gene locus in β-thalassaemia heterozygotes: clinical, haematological, biosynthetic and molecular studies.Br J Haematol. 1996;95:467–471.

    Article  PubMed  CAS  Google Scholar 

  27. Garner C, Tatu T, Reittie JE, et al. Genetic influences on F cells and other hematological variables: a twin heritability study.Blood. 2000;95:342–346.

    PubMed  CAS  Google Scholar 

  28. Garner C, Tatu T, Game L, et al. A candidate gene study of F cell levels in sibling pairs using a joint linkage and association analysis.GeneScreen. 2000;1:9–14.

    Article  CAS  Google Scholar 

  29. Wood WG. Hereditary Persistence of Fetal Hemoglobin and δβ Thalassemia. In: Steinberg MH, Forget BG, Higgs DR, Nagel RL, editors. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. Cambridge, UK: Cambridge University Press, Cambridge, UK; 2001. p. 356–388.

    Google Scholar 

  30. Galanello R, Dessi E, Melis MA, et al. Molecular analysis of βo-thalassemia intermedia in Sardinia.Blood. 1989;74:823–827.

    PubMed  CAS  Google Scholar 

  31. Craig JE, Rochette J, Fisher CA, et al. Dissecting the loci controlling fetal haemoglobin production on chromosomes 11p and 6q by the regressive approach.Nature Genetics. 1996; 12:58–64.

    Article  PubMed  CAS  Google Scholar 

  32. Craig JE, Rochette J, Sampietro M, et al. Genetic heterogeneity in heterocellular hereditary persistence of fetal hemoglobin.Blood. 1997;90:428–434.

    PubMed  CAS  Google Scholar 

  33. Dover GJ, Smith KD, Chang YC, et al. Fetal hemoglobin levels in sickle cell disease and normal individuals are partially controlled by an X-linked gene located at Xp22.2Blood. 1992;80:816–824.

    PubMed  CAS  Google Scholar 

  34. Garner CP, Tatu T, Best S, Creary L, Thein SL. Evidence for Genetic Interaction between the beta-globin complex and chromosome 8q in the expression of fetal hemoglobin.Am J Hum Genet. 2002;70:793–799.

    Article  PubMed  CAS  Google Scholar 

  35. Thein SL, Craig JE. Genetics of Hb F/F cell variance in adults and heterocellular hereditary persistence of fetal hemoglobin.Hemoglobin. 1998;22:401–414.

    Article  PubMed  CAS  Google Scholar 

  36. Badens C, Mattei MG, Imbert AM, et al. A novel mechanism for thalassaemia intermedia.The Lancet. 2002;359:132–133.

    Article  CAS  Google Scholar 

  37. Galanello R, Perseu L, Melis MA, et al. Hyperbilirubinaemia in heterozygous b- thalassaemia is related to co-inherited Gilbert’s syndrome.Br J Haematol. 1997;99:433–436.

    Article  PubMed  CAS  Google Scholar 

  38. Galanello R, Piras S, Barella S, et al. Cholelithiasis and Gilbert’s syndrome in homozygous β-thalassaemia.Br J Haematol. 2001;115:926–928.

    Article  PubMed  CAS  Google Scholar 

  39. Sampietro M, Lupica L, Perrero L, Comino A, Martinez di Montemuros F. The expression of uridine diphosphate glucuronosyltransferase gene is a major determinant of bilirubin level in heterozygous β-thalassaemia and in glucose-6-phosphate.Br J Haematol. 1997;99:437–439.

    Article  PubMed  CAS  Google Scholar 

  40. Bosma PJ, Chowdhury JR, Bakker C, et al. The genetic basis of the reduced expression of bilirubin UCP-glucuronosultransferase 1 in Gilbert’s syndrome.New England J Medicine. 1995;333:1171–1175.

    Article  CAS  Google Scholar 

  41. Passon RG, Howard TA, Zimmerman SA, Schultz WH, Ware RE. Influence of Bilirubin Uridine Diphosphate- Glucuronosyltransferase 1A Promoter Polymorphisms on Serum Bilirubin Levels and Cholelithiasis in Children With Sickle Cell Anemia.Am J Pediatr Hematol Oncol. 2001;23:448–451.

    Article  CAS  Google Scholar 

  42. Rees DC, Luo LY, Thein SL, Sing BM, Wickramasinghe S. Nontransfusional iron overload in thalassemia: Association with hereditary hemochromatosis.Blood. 1997;90:3234–3236.

    PubMed  CAS  Google Scholar 

  43. Piperno A, Mariani R, Arosio C, et al. Haemochromatosis in patients with beta-thalassaemia trait.Br J Haematol. 2000;111:908–914.

    Article  PubMed  CAS  Google Scholar 

  44. Merryweather-Clarke AT, Pointon JJ, Shearman JD, Robson KJH. Global prevalence of putative haemochromatosis mutations.J Medical Genetics. 1997;34:275–278.

    Article  CAS  Google Scholar 

  45. Andrews N. Iron homeostasis: insights from genetics and animal models.Nature Reviews Genetics. 2000;1:208–216.

    Article  PubMed  CAS  Google Scholar 

  46. Wonke B. Bone disease in b-thalassaemia major.Br J Haematol. 1998;103:897–901.

    Article  PubMed  CAS  Google Scholar 

  47. Dresner Pollack R, Rachmilewitz E, Blumenfeld A, Idelson M, Goldfarb AW. Bone mineral metabolism in adults with beta-thalassaemia major and intermedia.Br J Haematol. 2000; 111:902–907.

    Article  PubMed  CAS  Google Scholar 

  48. Economou-Peterson E, Aesspopos A, Kladi A, et al. Apolipoprotein E e4 allele as a genetic risk factor for left ventricular failure in homozygous β-thalassemia.Blood. 1998;92:3455–3459.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Thein, S.L. β-Thalassaemia prototype of a single gene disorder with multiple phenotypes. Int J Hematol 76 (Suppl 2), 96–104 (2002). https://doi.org/10.1007/BF03165097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03165097

Keywords

Navigation