Skip to main content
Log in

Exploring neurocircuitries of the basal ganglia by intracerebral administration of selective neurotoxins

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The detailed anatomy of the monoamine pathways of the rat, first described by the students of Nils-Åke Hillarp in Sweden, provided the basis for a neurocircuitry targeted pharmacology, leading to important therapeutic breakthroughs. Progress was achieved by the introduction of accurate lesion techniques based on selective neurotoxins. Systematic intracerebral injections of 6-hydroxydopamine let Urban Ungerstedt at the Karolinska Institutet, Stockholm, Sweden, to propose the first stereotaxic mapping of the monoamine pathways in the rat brain; and the ‘Rotational Behaviour’, as a classical model for screening drugs useful for alleviating Parkinson’s disease and other neuropathologies. The direction of the rotational behaviour induced by drugs systematically administrated to unilaterally 6-hydroxydopamine-lesioned rats reveals their mechanism of action at dopamine synapses, as demonstrated when rotational behaviour was combined with microdialysis. The model was useful for proposing a role of dopamine receptors in the gating of the flow of information integrated and/or modulated by the basal ganglia, through different efferent pathways; notably the striatopallidal system, via D2 receptors, and the striatonigral system, via D1 receptors. The role of other dopamine receptor subtypes on rotational behaviour has not yet been clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams RN (1978)In vivo electrochemical recording- a new neurophysiological approach.Trends Neurosci. 1, 160–163.

    Article  Google Scholar 

  • Agnati LF, K Fuxe, M Zoli, I Ozini, A Härfstrand, G Toffano and F Ferraguti (1986) A correlation analysis of the regional distribution of central enkephalin and beta-endorphin immu-noreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: the volume transmission and the wiring transmission.Acta Physiol. Scand. 128, 201–207.

    Article  PubMed  CAS  Google Scholar 

  • Andén N-E, A Carlsson, A Dahlström, K Fuxe, N-Å Hillarp and K Larsson (1964) Demonstration and mapping out of nigro-neostriatal dopamine neurons.Life Sci. 3, 523–530.

    Article  PubMed  Google Scholar 

  • Andén N-E, A Dalhström, K Fuxe and K Larsson (1966) Functional role of the nigro-neostriatal dopamine neurons.Acta Pharmacol. Toxicol. 24, 264–274.

    Google Scholar 

  • Andén N-E, A Rubenson, K Fuxe and T Hökfelt (1967) Evidence for dopamine receptor stimulation by apomorphine.J. Pharm. Pharmacol. 19, 627–629.

    PubMed  Google Scholar 

  • Arnt J, KP Bogeso, J Hyttel and E Meier (1988) Relative dopamine D1 and D2 receptor affinity and efficacy determine whether dopamine agonists induce hyperactivity or oral stereotypy in rats.Pharmacol. Toxicol. 62, 121–130.

    PubMed  CAS  Google Scholar 

  • Bentivoglio M and M Morelli (2005) The organization and circuits of mesencephalic dopaminergic neurons and the distribution of dopamine receptors in the brain, In:Handbook of Chemical Neuroanatomy:Dopamine (Björklund A and T Hökfelt, Eds.) (Elsevier BV:The Netherlands), Vol.21, 1–107.

    Google Scholar 

  • Bunzow JR, HHM Van Tol, DK Grandy, P Albert, A Salon, MD Christie, CA Machida, KA Neve and O Civelli (1988) Cloning and expression of a rat D2 dopamine receptor cDNA.Nature 336, 781–783.

    Article  Google Scholar 

  • Campbell GA, MJ Eckardt and FF Weight (1985) Dopaminergic mechanisms in subthalamic nucleus of rat: analysis using horseradish peroxidase and microiontophoresis.Brain Res. 333, 261–270.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, K Fuxe, B Hamberger and M Lindqvist (1966) Biochemical and histochemical studies on the effects of imipramine-like drugs and (+)-amphetamine on central and peripheral catecholamine neurons.Acta Physiol. Scand. 67, 481–497.

    Article  PubMed  CAS  Google Scholar 

  • Chevalier G, AM Tierry, T Shibazaki and J Feger (1981) Evidence for a GABAergic inhibitory nigrotectal pathway in the rat.Neurosci. Lett. 21, 67–70.

    Article  PubMed  CAS  Google Scholar 

  • Christensson-Nylander I, M Herrera-Marschitz, W Staines, T Hökfelt, L Terenius, U Ungerstedt, C Cuello, WH Oerteland M Goldstein (1986) Striato-nigral dynorphin and substance P pathways in the rat. I. Biochemical and immunohisto-chemical evidence.Exp. Brain Res. 64, 169–192.

    Article  PubMed  CAS  Google Scholar 

  • Corrodi H, K Fuxe, T Hökfelt, P Lidbrink and U Ungerstedt (1973) Effect of ergot drugs on central catecholamine neurons: evidence for stimulation of dopamine neurons.J. Pharm. Pharmacol. 25, 409–412.

    PubMed  CAS  Google Scholar 

  • Cuello AC and G Paxinos (1978) Evidence for a long leuenkephalin striatopallidal pathway in rat brain.Nature 271, 178–180.

    Article  PubMed  CAS  Google Scholar 

  • Dahlström A and K Fuxe (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons.Acta Physiol. Scand. Suppl.232, 1–55.

    Google Scholar 

  • Dahlström A and K Fuxe (1965) Evidence for the existence of monoamine-containing neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems.Acta Physiol. Scand. Suppl.247, 1–36.

    Google Scholar 

  • Dearry J, JA Gingrich, P Falardeau, RTJ Fremau, MD Bates and MG Caron (1990) Molecular cloning and expression of the gene for a human D1 dopamine receptor.Nature 347, 72–76.

    Article  PubMed  CAS  Google Scholar 

  • Delgado JMR, FV De Feudis, RH Roth, DK Ryugo and BM Mitruka (1972) Dialytrode for long-term intracerebral perfusion in awake monkeys.Arch. Int. Pharmacodyn. 198, 9–21.

    PubMed  CAS  Google Scholar 

  • Diaz J, D Lévesque, CH Lammers, M Griffon, M-P Martres, JC Schwartz and P Sokoloff (1995) Phenotypical characterization of neurons expressing the D3 receptor in the rat brain.Neuroscience 65, 731–745.

    Article  PubMed  CAS  Google Scholar 

  • DiChiara G, M Olianas, M Del Fiaco, PF Spano and A Tagliamonte (1977) Intranigral kainic acid is evidence that nigral non-dopaminergic neurons control posture.Nature 268, 743–745.

    Article  PubMed  CAS  Google Scholar 

  • DiChiara G, ML Porceddu, M Morelli, ML Mulas and GL Gessa (1979) Evidence for a GABAergic projection from the substantia nigra to the ventromedial thalamus and to the superior colliculus of the rat.Brain Res. 176, 273–284.

    Article  CAS  Google Scholar 

  • Ernst AM (1967) Mode of action of apomorphine and dexamphet-amine on gnawing compulsion in rats.Psychopharmacology 10, 316–323.

    Article  CAS  Google Scholar 

  • Ferre S, WT O’Connor, K Fuxe and U Ungerstedt (1993) The striato-pallidal neuron: a main locus for adenosine-dopamine interactions in the brain.J. Neurosci. 13, 5402–5406.

    PubMed  CAS  Google Scholar 

  • Fuxe K and U Ungerstedt (1970) Histochemical biochemical and functional studies on central monoamine neurons after acute and chronic amphetamine administration, In:Amphetamine and Related Compounds (Costa E, Ed.) (Raven Press:New York), pp 257–288.

    Google Scholar 

  • Gaddum JH (1961) Push-pull cannulae.J. Physiol. (London) 155, 1–2.

    Google Scholar 

  • Garcia-Munoz M, NM Nicolaou, IF Tulloch, AK Wright and GW Arbuthnott (1977) Feedback loop or output pathway in striato-nigral fibers?Nature 265, 363–365.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR and CJ Wilson (1996) The basal ganglia. Chapter II, In:Handbook of Chemical Neuroanatomy, Vol 12:Integrated Systems of the CNS. Part III (Swanson LW, A Björklund and T Hökfelt, Eds.) (Elsevier Science BV:The Netherlands), pp 371–468.

    Google Scholar 

  • Glowinski J (1974) Properties and function of intraneuronal monoamine compartments in central aminergic neurons, In:Handbook of Psychopharmacology (Iversen LL, S Iversen and SH Snyder, Eds.) (Plenum Press:New York), pp 139–167.

    Google Scholar 

  • Goldstein M, A Lieberman, JY Lew, T Asano, MR Rosenfeld and MH Makman (1980) Interaction of pergolide with central dopaminergic receptors.Proc. Natl. Acad. Sci. USA 77, 3725–3728.

    Article  PubMed  CAS  Google Scholar 

  • Haber SN, HJ Groenewegen, EA Grove and WJH Nauta (1985) Efferent connections of the ventral pallidum: evidence of a dual striato pallidofugal pathway.J. Comp. Neurol. 235, 322–335.

    Article  PubMed  CAS  Google Scholar 

  • Hallman H and G Jonsson (1984) Studies on central dopamine neurons. Regional characterization of dopamine turnover.Med. Biol. 62, 198–209.

    PubMed  CAS  Google Scholar 

  • Herrera-Marschitz M (1986) Neuropharmacology and functional anatomy of the basal ganglia. Karolinska Institutet-Thesis, Stockholm, pp 1–79.

    Google Scholar 

  • Herrera-Marschitz M and U Ungerstedt (1984a) Evidence that apomorphine and pergolide induce rotation in rats by different actions on D1 and D2 receptor sites.Eur. J. Pharmacol. 98, 165–176.

    Article  CAS  Google Scholar 

  • Herrera-Marschitz M and U Ungerstedt (1984b) Evidence striatal efferents relate to different dopamine receptors.Brain Res. 323, 269–278.

    Article  CAS  Google Scholar 

  • Herrera-Marschitz M and U Ungerstedt (1985) Effect of the dopamine D-1 antagonist SCH 23390 on rotational behaviour induced by apomorphine and pergolide in 6-hydroxydo-pamine denervated rats.Eur. J. Pharmacol. 109, 349–354.

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Marschitz M, J Hyttel and U Ungerstedt (1984) The dopamine D-1 antagonist SCH 23390 inhibits apomorphine but not pergolide induced rotation.Acta Physiol. Scand. 122, 427–428.

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Marschitz M, T Hökfelt and U Ungerstedt (1985a) A rotational model sensitive to D-1 but not to D-2 dopamine receptor stimulation.Acta Physiol. Scand. (Suppl. 124),542, 181.

    Google Scholar 

  • Herrera-Marschitz M, C Forster and U Ungerstedt (1985b) Rotational behaviour elicited by intracerebral injections of apomorphine and pergolide in 6-hydroxydopamine-lesioned rats. I: Comparisons between systemic and intrastriatal injections.Acta Physiol. Scand. 125, 519–527.

    Article  CAS  Google Scholar 

  • Herrera-Marschitz M, H Utsumi and U Ungerstedt (1990) Scoliosis in rats with experimentally-induced hemiparkin-sonism: dependence upon striatal dopamine denervation.J. Neurol. Neurosurg. Psychiatr. 53, 39–43.

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Marschitz M, JJ Meana, WT O’Connor, M Goiny, MS Reid and U Ungerstedt (1992) Neuronal dependence of extracellular dopamine, acetylcholine, glutamate, aspartate and gamma-aminobutyric acid (GABA) measured simultaneously from rat neostriatum usingin vivo microdialysis, reciprocal interactions.Amino Acids 2, 157–179.

    Article  CAS  Google Scholar 

  • Herrera-Marschitz M, Z-B You, M Goiny, JJ Meana, R Silveira, O Godukhin, Y Chen, S Espinoza, E Pettersson, F Loidl, G Lubec, K Andersson, I Nylander, L Terenius and U Ungerstedt (1996) On the origin of extracellular glutamate levels monitored in the basal ganglia byin vivo microdialysis.J. Neurochem. 66, 1726–1735.

    PubMed  CAS  Google Scholar 

  • Herrera-Marschitz M, M Goiny, Z-B You, JJ Meana, E Pettersson, R Rodriguez-Puertas, Z-Q Xu, L Terenius, T Hökfelt and U Ungerstedt (1997) On the release of glutamate and aspartate in the basal ganglia of the rat: interactions with monoamines and neuropeptides.Neurosci. Biobehav. Rev. 21, 489–495.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins DA and LW Niessen (1976) Substantia nigra projections to the reticulata formation, superior colliculus and central gray in the rat, cat and monkey.Neurosci. Lett. 2, 253–259.

    Article  CAS  PubMed  Google Scholar 

  • Hurd YL and U Ungerstedt (1989) Influence of a carrier transport process onin vivo release and metabolism of dopamine: dependence on extracellular Na+.Life Sci. 45, 283–293.

    Article  PubMed  CAS  Google Scholar 

  • Hyttel J (1983) SCH 23390- the first selective dopamine D-1 antagonist.Eur. J. Pharmacol. 91, 153–154.

    Article  PubMed  CAS  Google Scholar 

  • Hyttel J (1986) Dopamine D-1 and D-2 receptors. Characterization and differential effects of neuroleptics.Acta Pharm. Suecica Suppl. 1, 426-439.

    Google Scholar 

  • Hökfelt T and U Ungerstedt (1973) Specificity of 6-hydroxy-dopamine induced degeneration of central monoamine neurons: an electron and fluorescence microscopic study with special reference to intracerebral injection on the nigro-striatal dopamine system.Brain Res. 60, 269–297.

    Article  PubMed  Google Scholar 

  • Imperato S and G DiChiara (1984) Trans-striatal dialysis coupled to reverse performance liquid chromatography with electrochemical detection: a new method for the study of thein vivo release of endogenous dopamine and metabolites.J. Neurosci. 4, 960–977.

    Google Scholar 

  • Iorio LC, A Barnett, FH Leitz, VP Houser and CA Korduba (1983) SCH 23390, a potential benzazepine antipsychot- ic with unique interactions on dopaminergic systems.J. Pharmacol. Exp. Ther. 226, 462–468.

    PubMed  CAS  Google Scholar 

  • Jones DL and GJ Mogenson (1980) Nucleus accumbens to globus pallidus GABA projection subserving ambulatory activity.Am. J. Physiol. 238, 65–69.

    Google Scholar 

  • Jonsson G, H Hallman, I Mefford and RN Adams (1980) The use of liquid chromatography with electrochemical detection for the determination of adrenaline and other biogenic- monoamines in the CNS, In:Central Adrenaline Neurons (Fuxe K, M Goldstein, B Hökfelt and T Hökfelt, Eds.) (Pergamon Press:Oxford-New York), pp 59–71.

    Google Scholar 

  • Kilpatrick IC, MS Starr, A Flechter, TA James and NK MacLeod (1980) Evidence for a GABAergic nigrothalamic pathway in the rat.Exp. Brain Res. 40, 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick IC, GL Collingridge and MS Starr (1982) Evidence for the participation of nigrotectal ?-aminobutyrate-containing neurones in striatal and nigral-derived circling in the rat.Neuroscience 7, 207–222.

    Article  PubMed  CAS  Google Scholar 

  • Kita H, HT Chang and ST Kitai (1983) Pallidal inputs to sub-thalamus: intracellular analysis.Brain Res. 264, 255–265.

    Article  PubMed  CAS  Google Scholar 

  • Kretschmer BD, M Goiny and M Herrera-Marschitz (2000) Effect of intracerebral administration of NMD A and AMPA on dopamine and glutamate release in the ventral pallidum on motor behaviour.J. Neurochem. 74, 2049–2057.

    Article  PubMed  CAS  Google Scholar 

  • Langer SZ (1966) The degeneration contraction of the nictitating membrane in the un-anesthetized cat.J. Pharmacol. Exp. Ther. 151, 66–72.

    PubMed  CAS  Google Scholar 

  • Loopuijt LD and D Van Der Kooy (1985) Organization of the striatum: collateralization of its efferent axons.Brain Res. 348, 86–99.

    Article  PubMed  CAS  Google Scholar 

  • Marshall JF and U Ungerstedt (1977) Striatal efferent fibers play a role in maintaining rotational behaviour in the rat.Science 198, 62–64.

    Article  PubMed  CAS  Google Scholar 

  • Mogenson GJ and MA Nielsen (1983) Evidence that an accumbens to subpallidal GABAergic projection contributes to locomotor activity.Brain Res. Bull. 11, 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Monsma FJ Jr, LC Manhan, LD McVittie, CR Gerfen and DR Sibley (1990) Molecular cloning and expression of a D1 dopamine receptor linked to adenylyl cyclase activation.Proc. Natl. Acad. Sci. USA 87, 6723–6727.

    Article  PubMed  CAS  Google Scholar 

  • Osborne PG, WT O’Connor, KL Drew and U Ungerstedt (1990) Anin vivo microdialysis characterization of extracellular dopamine and GABA in dorsolateral striatum of awake freely moving and anesthetised rats.J. Neurosci. Meth. 34, 99–105.

    Article  CAS  Google Scholar 

  • Paxinos G and C Watson (1982)The Rat Brain in Stereotaxic Coordinates (Academic Press: San Diego, CA).

    Google Scholar 

  • Pendleton RG, L Samler, C Kaiser and PT Ridley (1978) Studies on renal dopamine receptors with a new agonist.Eur. J. Pharmacol. 51, 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Pycock CK and CD Marsden (1978) The rotating rodent: a two component system?Eur. J. Pharmacol. 47, 167–175.

    Article  PubMed  CAS  Google Scholar 

  • Reid M, M Herrera-Marschitz, T Hökfelt, L Terenius and U Ungerstedt (1988) Differential modulation of striatal dopamine release by intranigral injection of gamma-aminobutyric acid (GABA), dynorphin A and substance P.Eur. J. Pharmacol. 147, 411–420.

    Article  PubMed  CAS  Google Scholar 

  • Reid M, M Herrera-Marschitz, T Hökfelt, N Lindefors, H Persson and U Ungerstedt (1990) Striatonigral GABA, dynorphin, substance P and neurokinin A modulation of striatal dopamine: evidence for direct regulatory mechanisms.Exp. Brain Res. 82, 293–303.

    Article  PubMed  CAS  Google Scholar 

  • Robertson HA (1992) Dopamine receptor interactions: some implications for the treatment of Parkinson’s disease.Trends Neurosci. 15, 201–206.

    Article  PubMed  CAS  Google Scholar 

  • Romero CA, DA Bustamante, G Zapata-Torres, M Goiny, B Cassels and M Herrera-Marschitz (2006) Neurochemical and behavioural characterization of alkoxyamphetamine derivatives in rats.Neurotoxicity Res. 10, 11–22.

    CAS  Google Scholar 

  • Rouzaire-Dubois B, C Hammond, B Hamon and J Ferger (1980) Pharmacological blockade of the globus pallidus-induced inhibitory response of subthalamic cells in the rat.Brain Res. 200, 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R, K Fuxe, LF Agnati, T Hökfelt and JT Coyle (1979a) Rotational behaviour in rats with unilateral striatal kainic acid lesions: a behavioural model for studies on intact dopamine receptors.Brain Res. 170, 485–495.

    Article  CAS  Google Scholar 

  • Schwarcz R, T Hökfelt, K Fuxe, G Jonsson, M Goldstein and L Terenius (1979b) Ibotenic acid-induced neuronal degeneration: a morphological and neurochemical study.Exp. Brain Res. 37, 199–216.

    Article  CAS  Google Scholar 

  • Seeman P (1981) Brain dopamine receptors.Pharmacol. Rev. 32, 229–313.

    Article  Google Scholar 

  • Temlett JA, NP Quinn, PG Jenner, CD Marsden, E Purcher, AM Bonnet, Y Agid, R Markstein and X Lataste (1989) Antiparkinsonian activity of CY 208-243, a partial D-1 dopamine receptor agonist, in MPTP-treated marmosets and patients with Parkinson’s disease.Mov. Disord. 4, 261–265.

    Article  PubMed  CAS  Google Scholar 

  • Trabucchi M, R Longoni, S Fresia and PF Spano (1975) Sulpiride: a study of the effects on dopamine receptors in rat neostriatum and limbic forebrain.Life Sci. 17, 1551–1556.

    Article  PubMed  CAS  Google Scholar 

  • Tranzer JP and H Thoenen (1968) An electron microscopic study of selective, acute degeneration of sympathetic erve terminals after administration of 6-hydroxydopamine.Experientia 24, 155–156.

    Article  PubMed  CAS  Google Scholar 

  • Tsurata K, EA Frey, CW Grewe, TE Cote, RL Eskay and JW Kebabian (1981) Evidence that LY-141865 specifically stimulate the D2 dopamine receptor.Nature 292, 463–465.

    Article  Google Scholar 

  • Ungerstedt U (1971a) Stereotaxic mapping of the monoamine pathway in the rat brain.Acta Physiol. Scand. Suppl.367, 1–48.

    CAS  Google Scholar 

  • Ungerstedt U (1971b) Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system.Acta Physiol. Scand. Suppl.367, 69–93.

    CAS  Google Scholar 

  • Ungerstedt U (1971c) Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour.Acta Physiol. Scand. Suppl.367, 49–68.

    CAS  Google Scholar 

  • Ungerstedt U (1976) 6-Hydroxydopamine-induced degeneration of the nigrostriatal dopamine pathway: the turning syndrome.Pharmacol. Ther. Behav. 2, 37–40

    CAS  Google Scholar 

  • Ungerstedt U (1991) Microdialysis — principles and applications for studies in animals and man.J. Intern. Med. 230, 365–373.

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U and GW Arbuthnott (1970) Quantitative recording of rotational behaviour in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system.Brain Res. 24, 85–493.

    Article  Google Scholar 

  • Ungerstedt U and M Herrera-Marschitz (1981) Behavioural pharmacology of dopamine receptor mechanisms, In:Chemical Neurotransmission 75 years (Stjärne L, P Hedqvist, H Lagercrantz and Å Wennmalm, Eds.) (Academic Press:New York), pp 481–494.

    Google Scholar 

  • Ungerstedt U and C Pycock (1974) Functional correlates of dopamine neurotransmission.Bull. Schweiz. Acad. Med. Wiss. 1278, 1–5.

    Google Scholar 

  • Ungerstedt U, M Herrera-Marschitz, U Jungnelius, L Ståhle, U Tossman and T Zetterström (1982) Dopamine synaptic mechanisms reflected in studies combining behavioural recordings and brain dialysis.Adv. Biosci. 37, 219–231.

    CAS  Google Scholar 

  • Van Der Kooy D, T Hattori, K Shannak and O Hornykiewicz (1981) The pallido-subthalamic projection in rat: anatomical and biochemical studies.Brain Res. 204, 253–240.

    Article  PubMed  Google Scholar 

  • Vincent SR, T Hattori and EG McGeer (1978) The nigrotectal projection: a biochemical and ultrastructural characterization.Brain Res. 151, 159–164.

    Article  PubMed  CAS  Google Scholar 

  • Westerink BHC, HM Hofsteed, G Damsma and GB de Vries (1988) The significance of extracellular calcium for the release of dopamine, acetylcholine and amino acids in conscious rats evaluated by brain microdialysis.Naunyn-Schmiedeberg’s Arch. Pharmacol. 337, 373–378.

    Article  CAS  Google Scholar 

  • You Z-B, M Herrera-Marschitz, E Brodin, JJ Meana, P Morino, T Hökfelt, R Silveira, M Goiny and U Ungerstedt (1994a) On the origin of striatal cholecystokinin release: studies within vivo microdialysis.J. Neurochem. 62, 76–85.

    Article  CAS  Google Scholar 

  • You Z-B, I Nylander, M Herrera-Marschitz, WT O’Connor, M Goiny and L Terenius (1994b) The striatonigral dynorphin pathway of the rat studied within vivo microdialysis. I. Effects of K+-depolarization, lesions and peptidase inhibition.Neuroscience 63, 415–425.

    Article  CAS  Google Scholar 

  • You Z-B, M Herrera-Marschitz, I Nylander, WT O’Connor, M Goiny, U Ungerstedt and L Terenius (1994c) The striatonigral dynorphin pathway of the rat studied within vivo microdialysis. II. Effects of dopamine D1 and D2 receptor agonists.Neuroscience 63, 427–434.

    Article  CAS  Google Scholar 

  • Zetterström T (1986) Pharmacological analysis of central dopaminergic neurotransmission using a novelin vivo brain perfusion method. Karolinska Institutet-Thesis, Stockholm, pp 1–45.

    Google Scholar 

  • Zetterström T, T Sharp, CA Marsden and U Ungerstedt (1983)In vivo measurement of dopamine and its metabolites studied by intracerebral dialysis: changes after D-amphetamine.Neurochem. 41, 1769–1773.

    Article  Google Scholar 

  • Zetterström T, M Herrera-Marschitz and U Ungerstedt (1986) Simultaneous measurement of dopamine release and rotational behaviour in 6-hydroxydopamine denervated rats using intracerebral dialysis.Brain Res. 376, 1–7.

    Article  PubMed  Google Scholar 

  • Zhou QJ, DK Grandy, L Thambi, JA Kushner, HHM Van Tol, R Cone, D Pribnow, J Salon, JR Bunzow and O Civelli (1990) Cloning and expression of human and rat D1 dopamine receptors.Nature 347, 76–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Herrera-Marschitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrera-Marschitz, M., Bustamante, D., Morales, P. et al. Exploring neurocircuitries of the basal ganglia by intracerebral administration of selective neurotoxins. neurotox res 11, 169–182 (2007). https://doi.org/10.1007/BF03033566

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033566

Keywords

Navigation