Skip to main content
Log in

Semiquantitative analysis of interictal glucose metabolism between generalized epilepsy and localization related epilepsy

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) with [18F]fluoro-D-deoxyglucose (FDG) has been used to detect seizure foci and evaluate surgical resection with localization related epilepsies. However, few investigations have focused on generalized epilepsy in children. To reveal the pathophysiology of generalized epilepsy, we studied 11 patients with generalized epilepsy except West syndrome, and 11 patients with localization related epilepsy without organic disease. The FDG PET was performed by simultaneous emission and transmission scanning. We placed regions of interest (ROI) on bilateral frontal lobe, parietal lobe, occipital lobe, temporal lobe, basal ganglia, thalamus and cerebellum. Standardized uptake value (SUV) was measured and normalized to SUV of ipsilateral cerebellum. Then, we compared the data of generalized epilepsy to those of localization related epilepsy.

FDG PET revealed significant interictal glucose hypometabolism in bilateral basal ganglia in generalized epilepsy compared to that in localization related epilepsy (right side: p = 0.0095, left side: p = 0.0256, Mann-Whitney test). No other region showed any significant difference (p > 0.05) between the two groups. These findings indicate that the basal ganglia is involved in the outbreak of generalized seizures or is affected secondarily by the epileptogenicity itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuzniecky RI. Neuroimaging in pediatric epilepsy.Epilepsia 1996; 37(Suppl 1): 10–21.

    Article  Google Scholar 

  2. Henry TR, Mazziotta JC, Engel J Jr, Christenson PD, Zhang JX, Phelps ME, et al. Quantifying interictal metabolic activity in human temporal lobe epilepsy.J Cereb Blood Flow Metab 1990; 10: 748–757.

    PubMed  CAS  Google Scholar 

  3. Hoffmann KT, Amthauer H, Liebig T, Hosten N, Etou A, Lehmann TN, et al. MRI and18F-fluorodeoxyglucose positron emission tomography in hemimegalencephalyNeuroradiology 2000; 42: 749–752.

    Article  PubMed  CAS  Google Scholar 

  4. Lee JS, Asano E, Muzik O, Chugani DC, Juhasz C, Pfund Z, et al. Sturge-Weber syndrome: correlation between clinical course and FDG PET findings.Neurology 2001; 57: 189–195.

    PubMed  CAS  Google Scholar 

  5. Camfield P, Camfield C. Epileptic syndromes in childhood: clinical features, outcomes, and treatment.Epilepsia 2002; 43 (Suppl 3): 27–32.

    Article  PubMed  Google Scholar 

  6. Dupont S, Semah F, Samson Y, Baulac M. The underlying pathophysiology of ictal dystonia in temporal lobe epilepsy: an FDG-positron emission tomography study.Neurology 1998; 51: 1289–1292.

    PubMed  CAS  Google Scholar 

  7. Yanagawa T, Watanabe H, Inoue T, Ahmed AR, Tomiyoshi K, Shinozaki T, et al. Carbon-11 choline positron emission tomography in musculoskeletal tumors: comparison with fluorine-18 fluorodeoxyglucose positron emission tomography.J Comput Assist Tomogr 2003; 27: 175–182.

    Article  PubMed  Google Scholar 

  8. Sasaki M, Kuwabara Y, Yoshida T, Fukumura T, Morioka T, Nishio S, et al. Carbon-11-methionine PET in focal cortical dysplasia: a comparison with fluorine-18-FDG PET and technetium-99m-ECD SPECT.J Nucl Med 1998; 39: 974–977.

    PubMed  CAS  Google Scholar 

  9. Metsahonkala L, Gaily E, Rantala H, Salmi E, Valanne L, Aarimaa T, et al. Focal and global cortical hypometabolism in patients with newly diagnosed infantile spasms.Neurology 2002; 58: 1646–1651.

    PubMed  CAS  Google Scholar 

  10. Itomi K, Okumura A, Negoro T, Watanabe K, Natsume J, Takada H, et al. Prognostic value of positron emission tomography in cryptogenic West syndrome.Dev Med Child Neurol 2002; 44: 107–111.

    Article  PubMed  Google Scholar 

  11. Chugani HT, Rintahaka PJ, Shewmon DA. Ictal patterns of cerebral glucose utilization in children with epilepsy.Epilepsia 1994; 35: 813–822.

    Article  PubMed  CAS  Google Scholar 

  12. Semah F. PET imaging in epilepsy: basal ganglia and thalamic involvement.Epileptic Disord 2002; 4 (Suppl 3): 55–60.

    Google Scholar 

  13. Theodore WH, Brooks R, Margolin R, Patronas N, Sato S, Porter RJ, et al. Positron emission tomography in generalized seizures.Neurology 1985; 35: 684–690.

    PubMed  CAS  Google Scholar 

  14. Swartz BE, Simpkins F, Halgren E, Mandelkern M, Brown C, Krisdakumtorn T, et al. Visual working memory in primary generalized epilepsy: an18FDG-PET study.Neurology 1996; 47: 1203–1212.

    PubMed  CAS  Google Scholar 

  15. Slaght SJ, Paz T, Mahon S, Maurice N, Charpier S, Deniau JM. Functional organization of the circuits connecting the cerebral cortex and the basal ganglia: implications for the role of the basal ganglia in epilepsy.Epileptic Disord 2002; 4 (Suppl 3): 9–22.

    Google Scholar 

  16. Graybiel AM. Building action repertoires: memory and learning functions of the basal ganglia.Curr Opin Neurobiol 1995; 5: 733–741.

    Article  PubMed  CAS  Google Scholar 

  17. Graybiel AM. The Basal Ganglia and Chunking of Action Repertoires.Neurobiol Learn Mem 1998; 70: 119–136.

    Article  PubMed  CAS  Google Scholar 

  18. Pennartz CM, Groenewegen HJ, Lopes da Silva FH. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data.Prog Neurobiol 1994; 42: 719–761.

    Article  PubMed  CAS  Google Scholar 

  19. Rogers RD, Baunez C, Everitt BJ, Robbins TW. Lesions of the medial and lateral striatum in the rat produce differential deficits in attentional performance.Behav Neurosci 2001; 115: 799–811.

    Article  PubMed  CAS  Google Scholar 

  20. Deransart C, Depaulis A. The control of seizures by the basal ganglia? A review of experimental data.Epileptic Disord 2002; 4 (Suppl 3): 61–72.

    Google Scholar 

  21. Deransart C, Vercueil L, Marescaux C, Depaulis A. The role of basal ganglia in the control of generalized absence seizures.Epilepsy Res 1998; 32: 213–223.

    Article  PubMed  CAS  Google Scholar 

  22. Rektor I, Kuba R, Brazdil M. Interictal and ictal EEG activity in the basal ganglia: an SEEG study in patients with temporal lobe epilepsy.Epilepsia 2002; 43: 253–262.

    Article  PubMed  Google Scholar 

  23. Prevett MC, Lammertsma AA, Brooks DJ, et al. Benzodi-azepine-GABAA receptors in idiopathic generalized epilepsy measured with [11C]flumazenil and positron emission tomography.Epilepsia 1995; 36: 113–121.

    Article  PubMed  CAS  Google Scholar 

  24. Koepp MJ, Richardson MP, Brooks DJ, Cunningham VJ, Duncan JS. Central benzodiazepine/gamma-aminobutyric acid A receptors in idiopathic generalized epilepsy: an [11C]flumazenil positron emission tomography study.Epilepsia 1997; 38: 1089–1097.

    Article  PubMed  CAS  Google Scholar 

  25. Savic I, Pauli S, Thorell JO, Blomqvist G.In vivo demonstration of altered benzodiazepine receptor density in patients with generalised epilepsy.J Neurol Neurosurg Psychiatry 1994; 57: 797–804.

    Article  PubMed  CAS  Google Scholar 

  26. De Marcos FA, Ghizoni E, Kobayashi E, De Marcos FA, Ghizoni E, Kobayashi E, et al. Cerebellar volume and longterm use of phenytoin.Seizure 2003; 12: 312–315.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hikima, A., Mochizuki, H., Oriuchi, N. et al. Semiquantitative analysis of interictal glucose metabolism between generalized epilepsy and localization related epilepsy. Ann Nucl Med 18, 579–584 (2004). https://doi.org/10.1007/BF02984579

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02984579

Key words

Navigation