Skip to main content
Log in

Effect of Granulocyte Colony-Stimulating Factor on Bone Metabolism During Peripheral Blood Stem Cell Mobilization

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Granulocyte colony—stimulating factor (G-CSF) has been shown to affect the biochemical markers of bone metabolism, including serum bone alkaline phosphatase (BALP), serum osteocalcin, and urine deoxypyridinoline. To determine the association between bone resorption and formation and the G-CSF—induced mobilization of peripheral blood stem cells (PBSC), we examined these markers during mobilization in 19 healthy donors. The average (± SEM) serum BALP level before treatment was 81.6 ± 17.0 IU/dL, and the level increased significantly to 117.7 ± 15.8 IU/dL on day 5 of G-CSF administration (P < .0001). The urine deoxypyridinoline level before treatment was 12.3 ± 2.4 nmol/mmol creatinine, and this level also increased significantly to 19.4 ± 3.0 nmol/mmol creatinine on day 5 of G-CSF administration (P < .0001). In contrast, the average level of serum osteocalcin significantly decreased from 8.07 ± 2.88 ng/mL to 1.53 ± 0.18 ng/mL on day 5 (P = .0353). During G-CSF administration, we also studied the serum levels of various cytokines (IL-lβ, osteoclastogenesis inhibitory factor [OCIF], IL-6, tumor necrosis factor a, transforming growth factor β, interferon-γ, macrophage colony—stimulating factor) related to bone metabolism. Only the kinetics of OCIF were significantly affected. The serum level of OCIF increased immediately after the start of G-CSF administration and remained high during G-CSF administration. These results demonstrate that high-dose G-CSF affects bone metabolism and that OCIF may play a role in bone metabolism. Consistent with the notion that G-CSF affects bone metabolism, a significant correlation was observed between CD34+ cell yield and the increase in urine deoxypyridinoline but not for the changes in serum BALP and osteocalcin levels. This result suggests that bone resorption is either directly or indirectly related to the mobilization of PBSC by G-CSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. To LB, Haylock DN, Simmons PJ, Juttner CA. The biology and clinical uses of blood stem cells.Blood. 1997;89:2233–2258.

    PubMed  CAS  Google Scholar 

  2. Anderlini P, Przepiorka D, Champlin R, Körbling M. Biologic and clinical effects of granulocyte colony-stimulating factor in normal individuals.Blood. 1996;88:2819–2825.

    PubMed  CAS  Google Scholar 

  3. Engelhardt M, Bertz H, Alting M, et al. High-versus standard-dose filgrastim (rhG-CSF) for mobilization of peripheral-blood progenitor cells from allogeneic donors and CD34+ immunoselection.J Clin Oncol. 1999;17:2160–2172.

    Article  CAS  PubMed  Google Scholar 

  4. de la Rubin J, Martínez C, Solano C, et al. Administration of recombinant human granulocyte colony-stimulating factor to normal donors: results of the Spanish National Donor Registry. Spanish Group of Allo-PBT.Bone Marrow Transplant. 1999;24:723–728.

    Article  Google Scholar 

  5. Snowden JA, Biggs JC, Milliken ST, et al. A randomized, blinded, placebo-controlled, dose escalation study of the tolerability and efficacy of filgrastim for hematopoietic stem cell mobilization in patients with severe active rheumatoid arthritis.Bone Marrow Transplant. 1998;22:1035–1041.

    Article  CAS  PubMed  Google Scholar 

  6. Bishop NJ, Williams DM, Compston JC, et al. Osteoporosis in severe congenital neutropenia treated with granulocyte colony-stimulating factor.Br J Haematol. 1995;89:927–928.

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi T, Wada T, Mori M, et al. Overexpression of the granulocyte colony-stimulating factor gene leads to osteoporosis in mice.Lab Invest. 1996;74:827–834.

    PubMed  CAS  Google Scholar 

  8. Lee MY, Fukunaga R, Lee TJ, et al. Bone modulation in sustained hematopoietic stimulation in mice.Blood. 1991;77:2135–2141.

    PubMed  CAS  Google Scholar 

  9. Papayannopoulou T, Nakamoto B. Peripheralization of hemopoietic progenitors in primates treated with anti-VLA4 integrin.Proc Natl Acad Sci USA. 1993;90:9374–9378.

    Article  CAS  PubMed  Google Scholar 

  10. Lévesque JP, Leavesley DI, Niutta S, et al. Cytokines increase human hematopoietic cell adhesiveness by activation of very late antigen (VLA)-4 and VLA-5 integrins.J Exp Med. 1995;181:1805–1815.

    Article  PubMed  Google Scholar 

  11. Voermans C, Gerritsen WR, dem Borne AE, van der Schoot CE. Increased migration of cord blood-derived CD34+ cells as compared to bone marrow and mobilized peripheral blood CD34+ cells across uncoated or fibronectin-coated filters.Exp Hematol. 1999;27:1806–1814.

    Article  CAS  PubMed  Google Scholar 

  12. Petit I, Szyper-Kravitz M, Naglar A, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4.Nat Immunol. 2002;3:687–694.

    Article  CAS  PubMed  Google Scholar 

  13. Möhle R, Murea S, Kirsch M, Hass R. Differential expression of L-selectin, VLA-4, and LFA-1 on CD34+ progenitor cells from bone marrow and peripheral blood during G-CSF-enhanced recovery.Exp Hematol. 1995;23:1535–1542.

    PubMed  Google Scholar 

  14. Watanabe T, Kawano Y, Kanamaru S, et al. Endogenous interleukin-8 (IL-8) surge in granulocyte colony-stimulating factor-induced peripheral blood stem cell mobilization.Blood. 1999;93:1157–1163.

    PubMed  CAS  Google Scholar 

  15. Roodman GD. Cell biology of the osteoclast.Exp Hematol. 1999;27:1229–1241.

    Article  CAS  PubMed  Google Scholar 

  16. Jimi E, Shuto T, Koga T. Macrophage colony-stimulating factor and interleukin-1 alpha maintain the survival of osteoclast-like cells.Endocrinology. 1995;136:808–811.

    Article  CAS  PubMed  Google Scholar 

  17. Fuller K, Owens JM, Jagger CJ, et al. Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts.J Exp Med. 1993;178:1733–1744.

    Article  CAS  PubMed  Google Scholar 

  18. Pfeilschifter J, Chenu C, Bird A, et al. Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclast-like cells in vitro.J Bone Miner Res. 1989;4:113–118.

    Article  CAS  PubMed  Google Scholar 

  19. Murray RE, McGuigan F, Grant SF, et al. Polymorphisms of the interleukin-6 gene are associated with bone mineral density.Bone. 1997;21:89–92.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou H, Choong PC, Chou ST, et al. Transforming growth factor beta 1 stimulates bone formation and resorption in an in-vitro model in rabbits.Bone. 1995;17:443S-448S.

    Article  CAS  PubMed  Google Scholar 

  21. Fujita T, Mastui T, Nakao Y, et al. Cytokines and osteoporosis.Ann N Y Acad Sci. 1990;587:371–375.

    Article  CAS  PubMed  Google Scholar 

  22. Yasuda H, Shima N, Nakagawa N, et al. Identify of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro.Endocrinology. 1998;139:1329–1337.

    Article  PubMed  Google Scholar 

  23. Delmas PD. Biochemical markers of bone turnover.J Bone Miner Res. 1993;8(suppl 2): S549-S555.

    PubMed  Google Scholar 

  24. Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9-mediated release of kit-ligand.Cell. 2002;109:625–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Janowska-Wieczorek A, Marquez LA, Dobrowsky A, Ratajczak MZ, Cabuhat ML. Differential MMP and TIMP production by human marrow and peripheral blood CD34+ cells in response to chemokines.Exp Hematol. 2000;28:1274–1285.

    Article  CAS  PubMed  Google Scholar 

  26. Lévesque JP, Takamatsu Y, Nilsson S, Haylock DN, Simmons PJ. Vascular cell adhesion molecule-1 (CD106) is cleaved by neu- trophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor.Blood. 2001;98:1289–1297.

    Article  PubMed  Google Scholar 

  27. Bonilla MA, Dale D, Zeidler C, et al. Long-term safety of treatment with recombinant human granulocyte colony-stimulating factor (r-metHuG-CSF) in patients with severe congenital neutropenias.Br J Haematol. 1994;88:723–730.

    Article  CAS  PubMed  Google Scholar 

  28. Soshi S, Takahashi HE, Tanizawa T, et al. Effects of recombinant human granulocyte colony-stimulating factor (rh G-CSF) on rat bone: inhibition of bone formation at the endosteal surface of vertebra and tibia.Calcif Tissue Int. 1996;58:337–340.

    Article  CAS  PubMed  Google Scholar 

  29. Morris HA, Chatterton BE, Ross PD, Durbridge TC. Diagnostic procedures. In: Need AG, Morris HA, eds.Metabolic Bone and Stone Disease. Edinburgh, UK: Churchill Livingstone; 1993:339–379.

    Google Scholar 

  30. Takamatsu Y, Simmons PJ, Moore RJ, et al. Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization.Blood. 1998;92:3465–3473.

    PubMed  CAS  Google Scholar 

  31. Shinar DM, Sato M, Rodan GA. The effect of hematopoietic growth factors on the generation of osteoclast-like cells in mouse bone marrow cultures.Endocrinology. 1990;126:1728–1735.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Watanabe.

About this article

Cite this article

Watanabe, T., Suzuya, H., Onishi, T. et al. Effect of Granulocyte Colony-Stimulating Factor on Bone Metabolism During Peripheral Blood Stem Cell Mobilization. Int J Hematol 77, 75–81 (2003). https://doi.org/10.1007/BF02982606

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02982606

Key words

Navigation