Skip to main content
Log in

Extremal functions for Moser-Trudinger type inequality on compact closed 4-manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Given a compact closed four-dimensional smooth Riemannian manifold, we prove existence of extremal functions for Moser-Trudinger type inequality. The method used is blow-up analysis combined with capacity techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.R. A sharp inequality of J. Moser for higher-order derivatives,Ann. Math. 128, 385–398, (1988).

    Article  Google Scholar 

  2. Beckner, W. Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality,Ann. Math. 138(1), 213–242, (1993).

    Article  MATH  MathSciNet  Google Scholar 

  3. Carleson, L. and Chang, S. Y. A. On the existence of an extremal function for an inequality of J. Moser,Bull. Sci. Math. 110, 113–127, (1986).

    MATH  MathSciNet  Google Scholar 

  4. Chang, S. Y. A. and Yang, P. C. Extremal metrics of zeta functional determinants on 4-manifolds,Ann. of Math. 142, 171–212, (1995).

    Article  MATH  MathSciNet  Google Scholar 

  5. Chang, S. Y. A., Gursky, M. J., and Yang, P. C. A conformally invariant sphere theorem in four dimensions,Publ. Math. Inst. Hautes etudes Sci. 989 2003, 105–143.

    MathSciNet  Google Scholar 

  6. Chang, S. Y. A. The Moser-Trudinger inequality and applications to some problems in conformal geometry, inNonlinear Partial Differential Equations in Differential Geometry (Park City, UT, 1992) IAS/Park City Mathematics series,2, American Mathematical Society, Providence, RI 65–125, (1996).

    Google Scholar 

  7. Djadli, Z. and Malchiodi, A. Existence of conformal metrics with constantQ-curvature, to appear inAnn. of Math.

  8. Fontana, L. Sharp borderline Sobolev inequalities on compact Riemmanian manifolds,Comment. Math. Helv. 68, 415–454, (1993).

    Article  MATH  MathSciNet  Google Scholar 

  9. Flucher, M. Extremal functions for Trudinger-Moser type inequality in 2 dimensions,Comment. Math. Helv. 67, 471–497, (1992).

    Article  MATH  MathSciNet  Google Scholar 

  10. Gursky, M. The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE,Comm. Math. Phys. 207(1), 131–143, (1999).

    Article  MATH  MathSciNet  Google Scholar 

  11. Li, J. Li, Y., and Liu, P. TheQ-curvature on a 4-dimensional Riemannian manifold (M, g) with M QdV g = 8π 2, preprint.

  12. Li, Y. and Liu, P. Moser-Trudinger inequality on the boundary of compact of compact Riemannian surface,Math. Z. 250(2), 363–386, (2005).

    Article  MATH  MathSciNet  Google Scholar 

  13. Li, Y. Moser-Trudinger inequality on compact Riemannian manifolds of dimension two,J. Partial Differential Equations 14(2), 1289–1319, (2001).

    Google Scholar 

  14. Li, Y. The extremal functions for Moser-Trudinger inequality on compact Riemannian manifolds,Sci. China Series A. Math. 48, 18–648, (2005).

    Google Scholar 

  15. Lin, K. C. Extremal functions for Moser’s inequality,Trans. Amer. Math. Soc. 348, 2663–2671, (1996).

    Article  MATH  MathSciNet  Google Scholar 

  16. Malchiodi, A. Compactness of solutions to some geometric fourth-order equations,J. Reine Angew. Math., to appear.

  17. Malchiodi, A. and Ndiaye, C. B. Some existence results for the Toda system on closed surfaces,Ren. Mat. Acc. Lincei, to appear.

  18. Moser, J. A Sharp form of an inequality of Trudinger,Indiana Univ. Math. J. 20, 1077–1091, (1971).

    Article  Google Scholar 

  19. Ndiaye, C. B. Constant Q-curvature metrics in arbitrary dimension,J. Funct. Anal. 251(1), 1–58, (2007).

    Article  MATH  MathSciNet  Google Scholar 

  20. Paneitz, S. A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds. preprint, (1983).

  21. Pohozaev, S. I. The Sobolev embedding in the casepl=n, inProceedings of the Technical Scientific Conference on Advances of Scientific Research (1964–1965), Mathematics Section, 158–170, Moskov. Energet. Inst. Moscow, (1965).

  22. Struwe, M. Critical points of embedding ofH 1,n0 ,n into Orlicz space,Ann. Inst. H. Poincare Anal. Non Lineaire 5(5), 425–464, (1988).

    MATH  MathSciNet  Google Scholar 

  23. Trudinger, N. S. On embedding into Orlicz space and some applications,J. Math. Mech. 17, 473–484, (1967).

    MATH  MathSciNet  Google Scholar 

  24. Xu, X. Unlqueness and non-existence theorems for conformally invariant equations,J. Funct. Anal. 222, 1–28, (2005).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Li.

Additional information

Acknowledgements and Notes. The second author has been supported by M.U.R.S.T. within the PRIN 2004 Variational methods and nonlinear differential equations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Ndiaye, C.B. Extremal functions for Moser-Trudinger type inequality on compact closed 4-manifolds. J Geom Anal 17, 669–699 (2007). https://doi.org/10.1007/BF02937433

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02937433

Math Subject Classifications

Key Words and Phrases

Navigation