Skip to main content
Log in

Chromosome segregation inBacillus subtilis

Folia Microbiologica Aims and scope Submit manuscript

Abstract

Bacillus subtilis, a Gram-positive bacterium commonly found in soil, is an excellent model organism for the study of basic cell processes, such as cell division and cell differentiation, called sporulation. InB. subtilis the essential genetic information is carried on a single circular chromosome, the correct segregation of which is crucial for both vegetative growth and sporulation. The proper completion of life cycle requires each daughter cell to obtain identical genetic information. The consequences of inaccurate chromosome segregation can lead to formation of anucleate cells, cells with two chromosomes, or cells with incomplete chromosomes. Although bacteria miss the classical eukaryotic mitotic apparatus, the chromosome segregation is undeniably an active process tightly connected to other cell processes as DNA replication and compaction. To fully understand the chromosome segregation, it is necessary to study this process in a wider context and to examine the role of different proteins at various cell life cycle stages. The life cycle ofB. subtilis is characteristic by its specific cell differentiation process where, two slightly different segregation mechanisms exist, specialized in vegetative growth and in sporulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Rac:

remodeling and anchoring of the chromosome

SMC:

structural maintenance of chromosome

References

  • Adams D.E., Shekhtman E.M., Zechiedrich E.L., Schmid M.B., Cozzarelli N.R.: The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication.Cell 71, 277–288 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Arigoni F., Guérout-Fleury A.M., Barák I., Stragier P.: The SpoIIE phosphatase, the sporulation septum, and the establishment of forespore-specific transcription inBacillus subtilis: a reassessment.Mol.Microbiol. 31, 1407–1414 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Autret S., Nair R., Errington J.: Genetic analysis of the chromosome segregation protein Spo0J ofBacillus subtilis: evidence for separate domains involved in DNA binding and interactions with Soj protein.Mol.Microbiol. 41, 743–755 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Autret S., Errington J.: A role for division-site-selection protein MinD in regulation of internucleoid jumping of Soj (ParA) protein inBacillus subtilis.Mol.Microbiol. 47, 159–169 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Baldus J.M., Green B.D., Youngmann P., Moran C.P.: Phosphorylation ofBacillus subtilis transcription factor Spo0A stimulates transcription fromSpoIIG promoter by enhancing binding to weak 0A boxes.J.Bacteriol. 176, 296–306 (1994).

    PubMed  CAS  Google Scholar 

  • Bath J., Wu L.J., Errington J., Wang J.C.: Role ofBacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum.Science 290, 995–997 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yehuda S., Rudner D.Z., Losick R.: RacA, a bacterial protein that anchors chromosomes to the cell poles.Science 299, 532–536 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yehuda S., Fujita M., Liu X.S., Gorbatyuk B., Skoko D., Yan J., Marko J.F., Liu J.S., Eichenberger P., Rudner D.Z., Losick R.: Defining a centromere-like element inBacillus subtilis by identifying the binding sites for the chromosome-anchoring protein RacA.Mol.Cell 17, 773–782 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Bylund J.E., Haines M.A., Piggot P.J., Higgins M.L.: Axial filament formation inBacillus subtilis: induction of nucleoids of increasing length after addition of chloramphenicol to exponential-phase cultures approaching stationary phase.J.Bacteriol. 175, 1886–1890 (1993).

    PubMed  CAS  Google Scholar 

  • Cervin M.A., Spiegelman G.B., Raether B., Ohlsen K., Perego M., Hoch J.A.: A negative regulator linking chromosome segregation to developmental transcription inBacillus subtilis.Mol.Microbiol. 29, 85–89 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Cha J.H., Stewart G.C.: The divIVA minicell locus ofBacillus subtilis.J.Bacteriol. 179, 1671–1683 (1997).

    PubMed  CAS  Google Scholar 

  • Dame R.T.: The role of nucleoid-associated proteins in the organization and compaction of bacterial chromation.Mol.Microbiol. 56, 858–870 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Defeu Soufo H.J., Graumann P.L.: Actin-like proteins MreB and Mbl fromBacillus subtilis are required for bipolar positioning of replication origins.Curr.Biol. 13, 1916–1920 (2003).

    Article  CAS  Google Scholar 

  • Defeu Soufo H.J., Graumann P.L.: Dynamic movement of actin-like proteins within bacterial cells.EMBO Rep. 5, 789–794 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Draper G.C., Gober J.W.: Bacterial chromosome segregation.Ann.Rev.Microbiol. 56, 567–597 (2002).

    Article  CAS  Google Scholar 

  • Dworkin J., Losick R.: Does RNA polymerase help drive chromosome segregation in bacteria?Proc.Nat.Acad.Sci.USA 99, 14089–14094 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Edwards D.H., Errington J.: TheBacillus subtilis DivIVA protein targets to the division septum and controls site specificity of cell division.Mol.Microbiol. 24, 905–915 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Edwards D.H., Thomaides H.B., Errington J.: Promiscuous targeting ofBacillus subtilis cell division protein DivIVA to division sites inEscherichia coli and fission yeast.EMBO J. 19, 2719–2727 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Espeli O., Lee C., Marians K.J.: A physical and functional interaction betweenEscherichia coli FtsK and topoisomerase IV.J.Biol.Chem. 278, 44639–44644 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Fadda D., Pischedda C., Caldara F., Whalen M.B., Anderluzzi D., Domenici E., Massidda O.: Characterization ofdivIVA and other genes located in the chromosomal region downstream of the dcw cluster inStreptococcus pneumoniae.J.Bacteriol. 185, 6209–6214 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Flärdh K.: Essential role of DivIVA in polar growth and morphogenesis inStreptomyces coelicolor A3(2).Mol.Microbiol. 49, 1523–1536 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Frandsen N., Barák I., Karmazyn-Campelli C., Stragier P.: Transient gene asymmetry during sporulation and establishment of cell specificity inBacillus subtilis.Genes Dev. 13, 394–399 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Gerdes K., Moller-Jensen J., Bugge Jensen R.: Plasmid and chromosome portioning: surprises from phylogeny.Mol.Microbiol. 37, 455–466 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Glaser P., Sharpe M.E., Raether B., Perego M., Ohlsen K., Errington J.: Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning.Genes Dev. 11, 1160–1168 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Gordon G.S., Wright A.: DNA segregation in bacteria.Ann.Rev.Microbiol. 54, 681–708 (2000).

    Article  CAS  Google Scholar 

  • Hilbert D.W., Chary V.K., Piggot P.J.: Contrasting effects of σE on compartmentalization of σF activity during sporulation ofBacillus subtilis.J.Bacteriol. 186, 1983–1990 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Hirano M., Hirano T.: Hinge-mediated dimerization of SMC proteins is essential or its dynamic interaction with DNA.EMBO J. 23, 2664–2673 (2006).

    Article  CAS  Google Scholar 

  • Hranueli D., Piggot P.J., Mandelstam J.: Statistical estimate of the total number of operons specific forBacillus subtilis sporulation.J.Bacteriol. 119, 684–690 (1974).

    PubMed  CAS  Google Scholar 

  • Ireton K., Gunther N.W., Grossman A.D.: Spo0J is required for normal chromosome segregation as well as the initiation of sporulation inBacillus subtilis.J.Bacteriol. 176, 5320–5329 (1994).

    PubMed  CAS  Google Scholar 

  • Jacob F., Brenner S., Cuzin F.: On the regulation of DNA replication in bacteria.Cold Spring Harbor Quant.Biol. 23, 329–348 (1963).

    Google Scholar 

  • Lee P.S., Lin D.C.-H., Moriya S., Grossman A.D.: Effects of the chromosome partioning protein Spo0J (ParB) onoriC positioning and replication initiation inBacillus subtilis.J.Bacteriol. 185, 1326–1337 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Lee P.S., Grossman A.D.: The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation inBacillus subtilis.Mo.Microbiol. 60, 853–869 (2006).

    Article  CAS  Google Scholar 

  • Lemon K.P., Grossman A.D.: Localization of bacterial DNA polymerase: evidence for a factory model of replication.Science 282, 1516–1519 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Lemon K.P., Grossman A.D.: Movement of replicating DNA through a stationary replisome.Mol.Cell 6, 1321–1330 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Lewis P.J., Errington J.: Direct evidence for active segregation oforiC regions of theBacillus subtilis chromosome and co-localization with the Spo0J partitioning protein.Mol.Microbiol. 25, 945–954 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Lin D.C.-H., Levin P.A., Grossman A.D.: Bipolar localization of a chromosome partition protein inBacillus subtilis.Proc.Nat.Acad.Sci.USA 94, 4721–4726 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Lin D.C.-H., Grossman A.D.: Identification and characterization of a bacterial chromosome partitioning site.Cell 92, 675–685 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Liu L.N.-J., Dutton R.J., Pogliano K.: Evidence that the SpoIIIE DNA translocase participates in membrane fusion during cytokinesis and engulfment.Mol.Microbiol. 59, 1097–1113 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Marston A.L., Thomaides H.B., Edwards D.H., Sharpe M.E., Errington J.: Polar localization of the MinD protein ofBacillus subtilis and its role in selection of the mid-cell division site.Genes Dev. 12, 3419–3430 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Marston A.L., Errington J.: Dynamic movement of the ParA-like Soj protein ofB. subtilis and its dual role in nucleoid organization and developmental regulation.Mol.Cell 4, 673–682 (1999a).

    Article  PubMed  CAS  Google Scholar 

  • Marston A.L., Errington J.: Selection of the mid-cell division site inBacillus subtilis through MinD-dependent polar localization and activation of MinC.Mol.Microbiol. 33, 84–96 (1999b).

    Article  PubMed  CAS  Google Scholar 

  • Melby T.E., Ciampaglio C.N., Briscoe G., Erickson H.P.: The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge.J.Cell.Biol. 142, 1595–1604 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Nordström K., Austin S.J.: Mechanisms that contribute to the stable segregation of plasmids.Ann.Rev.Genet. 23, 37–69 (1989).

    Article  PubMed  Google Scholar 

  • Ogura Y., Ogasawara N., Harry E.J., Moriya S.: Increasing the ratio of Soj to Spo0J promotes replication initiation inBacillus subtilis.J.Bacteriol. 185, 6316–6324 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Pinho M.G., Errington J.: AdivIVA null mutant ofStaphylococcus aureus undergoes normal cell division.FEMS Microbiol.Lett. 240, 145–149 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Pogliano K., Hofmeister A.E., Losick R.: Disappearance of the σE transcription factor from the forespore and the SpoIIE phosphatase from the mother cell contributes to establishment of cell-specific gene expression during sporulation inBacillus subtilis.J.Bacteriol. 179, 3331–3341 (1997).

    PubMed  CAS  Google Scholar 

  • Quisel J.D., Lin D.C.-H., Grossman A.D.: Control of development by altered localization of a transcription factor inBacillus subtilis.Mol.Cell 4, 665–672 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Quisel J.D., Grossman A.D.: Control of sporulation gene expression inBacillus subtilis by chromosome portioning proteins Soj (ParA) and Spo0J (ParB).J.Bacteriol. 182, 3446–3451 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Arcos S., Liao M., Marthaler S., Rigden M., Dillon J.A.:Enterococcus faecalis divIVA: an essential gene involved in cell division, cell growth and chromosome segregation.Microbiology 151, 1381–1393 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Ramos A., Honrubia M.P., Valbuena N., Vaquera J., Mateos L.M., Gil J.A.: Involvement of DivIVA in the morphology of the rod-shaped actinomyceteBrevibacterium lactofermentum.Microbiology 149, 3531–3542 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Reeve J.N., Mendelson N.H., Coyne S.I., Hallock L.L., Cole R.M.: Minicells ofBacillus subtilis.J.Bacteriol. 114, 860–873 (1973).

    PubMed  CAS  Google Scholar 

  • Ryter A.: Morphologic study of the sporulation ofBacillus subtilis.Ann.Inst.Pasteur (Paris) 108, 40–60 (1965).

    CAS  Google Scholar 

  • Ryter A., Bloom B., Aubert J.P.: Intracellular localization ribonucleic acids synthesized during sporulation inBacillus subtilis.C.R.Acad.Sci.Hebd.Séances Acad.Sci.D 262, 1305–1307 (1966).

    PubMed  CAS  Google Scholar 

  • Ryter A., Hirota Y., Jacob F.: DNA-membrane complex and nuclear segregation in bacteria.Cold Spring Harbor Symp.Quant.Biol. 33, 669–676 (1968).

    PubMed  CAS  Google Scholar 

  • Satola S., Kirchman P.A., Moran C.P. Jr.: Spo0A binds to a promoter used by σA RNA polymerase during sporulation inBacillus subtilis.Proc.Nat.Acad.Sci.USA 88, 4533–4537 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Sharp M.D., Pogliano K.: Anin vivo membrane fusion assay implicates SpoIIIE in the final stages of engulfment duringBacillus subtilis sporulation.Proc.Nat.Acad.Sci.USA 96, 14553–14558 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Sharp M.D., Pogliano K.: Role of cell-specific SpoIIIE assembly in polarity of DNA transfer.Science 295, 137–139 (2002a).

    Article  PubMed  CAS  Google Scholar 

  • Sharp M.D., Pogliano K.: MinCD-dependent regulation of the polarity of SpoIIIE assembly and DNA transfer.EMBO J. 21, 6267–6274 (2002b).

    Article  PubMed  CAS  Google Scholar 

  • Sharp M.D., Pogliano K.: The membrane domain of SpoIIIE is required for membrane fusion duringBacillus subtilis sporulation.J.Bacteriol. 185, 2005–2008 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Sharpe M.E., Errington J.: TheBacillus subtilis soj-spo0J locus is required for a centromere-like function involved in prespore chromosome partitioning.Mol.Microbiol. 21, 501–509 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Teleman A.A., Graumann P.L., Chi-Hong Lin D., Grossman A.D., Losick R.: Chromosome arrangement within a bacterium.Curr.Biol. 8, 1102–1109 (1998)

    Article  PubMed  CAS  Google Scholar 

  • Thomaides H.B., Freeman M., El Karoui M., Errington J.: Division-site-selection protein DivIVA ofBacillus subtilis has a second distinct function in chromosome segregation during sporulation.Genes Dev. 15, 1662–1673 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Trach K., Burbulys D., Strauch M., Wu J.J., Dhillon N., Jonas R., Hanstein C., Kallio P., Perego M., Bird T., Spiegelman G., Fogher C., Hoch J.A.: Control of the initiation of sporulation inBacillus subtilis by phosphorelay.Res.Microbiol. 142, 815–823 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Webb C.D., Teleman A., Gordon S., Straight A., Belmont A., Lin D.C., Grossman A.D., Wright A., Losick R.: Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells ofB. subtilis.Cell 88, 667–674 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Webb C.D., Graumann P.L., Kahana J.A., Teleman A.A., Silver P.A., Losick R.: Use of time-lapse microscopy to visualize rapid movement of the replication origin region of the chromosome during the cell cycle inBacillus subtilis.Mol.Microbiol. 28, 883–892 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Williams D.R., Thomas C.M.: Active portioning of bacterial plasmids.J.Gen.Microbiol. 138, 1–16 (1992).

    PubMed  CAS  Google Scholar 

  • Woldringh C.L.: The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation.Mol.Microbiol. 45, 17–29 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Wu H.Y., Shyy S.H., Wang J.C., Liu L.F.: Transcription generates positively and negatively supercoiled domains in the template.Cell 53, 433–440 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Wu J.J., Piggot P.J., Tatti K.M., Moran C.P.: Transcription of theBacillus subtilis spoIIA locus.Gene 101, 113–116 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Wu L.J., Errington J.:Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division.Science 264, 572–575 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Wu L.J., Lewis P.J., Allmansberger R., Hauser P.M., Errington J.: A conjugation-like mechanism for prespore chromosome partitioning during sporulation inBacillus subtilis.Genes Dev. 9, 1306–1326 (1995).

    Google Scholar 

  • Wu L.J., Errington J.: Septal localization of the SpoIIIE chromosome partitioning protein inBacillus subtilis.EMBO J. 16, 2161–2169 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Wu L.J., Errington J.: Use of asymmetric cell division andspoIIIE mutants to probe chromosome orientation and organization inBacillus subtilis.Mol.Microbiol. 27, 777–786 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Wu L.J., Errington J.: RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulatingBacillus subtilis.Mol.Microbiol. 49, 1463–1475 (2003).

    Article  PubMed  CAS  Google Scholar 

  • York K., Kenney T.J., Satola S., Moran C.P. Jr.,Poth H., Youngman P.: Spo0A controls the σA-dependent activation ofBacillus subtilis sporulation-specific transcription unitspoIIE.J.Bacteriol. 174, 2648–2458 (1992).

    PubMed  CAS  Google Scholar 

  • Zhang W., Carneiro M.J.V.M., Turner I.J., Allen S., Roberts C.J., Soultanas P.: TheBacillus subtilis DnaD and DnaB proteins exhibit different DNA remodeling activities.J.Mol.Biol. 351, 66–75 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Pavlendová.

Additional information

The work was supported by grants 2/7007/27 of theSlovak Academy of Sciences, by grants from theSlovak Research and Development Agency under the contract no. LLP-0218-06, no. ESF-EC-0106, no. APVT-51-0278, and by grant NMP4-CT-2004-013 523 of theEC 6th Framework.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlendová, N., Muchová, K. & Barák, I. Chromosome segregation inBacillus subtilis . Folia Microbiol 52, 563–572 (2007). https://doi.org/10.1007/BF02932184

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932184

Keywords

Navigation