Skip to main content
Log in

Optimization of γ-polyglutamic acid production byBacillus subtilis ZJU-7 using a surface-response methodology

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The components of the media used to elicit the biosynthesis of poly-γ-glutamic acid (γ-PGA) byBacillus subtilis ZJU-7 were investigated, particularly the carbon and nitrogen sources. Of the 7 carbon sources investigated, sucrose induced the highest rate of γ-PGA productivity; among the nitrogen sources, tryptone had the best effect for γ-PGA production. A 26−2 fractional factorial design was used to screen factors that influence γ-PGA production significantly, and a central composite design was finally adopted to formulate the optimal medium. γ-PGA productivity improved approximately 2-fold when the optimal medium was used compared with the original nonoptimized medium, and volumetric productivity reached a maximum of 58.2 g/L after a 24-h cultivation period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sekine, T., T. Nakamura, Y. Shimizu, H. Ueda, K. Matsumoto, Y. Takimoto, and T. Kiyotani (2000) A new type of surgical adhesive made of porcine collagen and poly glutamic acid.J. Biomed. Mater. Res. 35: 305–310.

    Google Scholar 

  2. Li, C., J. E. Price, L. Milis, N. R. Hunter, S. Ke, D. F. Yu, C. Charnsangavej, and S. Wallace (1999) Antitumor activity of poly(l-glutamic acid)-paclitaxel on syngeneic and xenografted tumors.Clin. Cancer Res. 5: 891–897.

    CAS  Google Scholar 

  3. Kadowaki, M. and T. Noguchi (2001) Natto mucilage containing poly-γ-glutamic acid increase soluble calcium in the rat small intestine.Biosci. Biotechnol. Biochem. 65: 516–521

    Article  Google Scholar 

  4. Choi, H. J. and M. Kunioka (1995) Preparation conditions and swelling equilibria of hydrogel prepared by γ-irradiation from microbial poly(γ-glutamic acid).Radiar. Phys. Chem. 46: 175–179.

    Article  CAS  Google Scholar 

  5. McLean, R. J., D. Beauchemin, L. Clapham, and T. I. Beveridge (1990) Metal-binding characteristics of the gamma-glutamyl capsular polymer ofBacillus licheniformis ATCC 9945.Appl. Environ. Microbiol. 56: 3671–3677.

    CAS  Google Scholar 

  6. Ivánovics, G. and V. Bruckner (1937) Chemische und immunologische Studien über den Mechanismus der Milzbrandinfektion und Immunität; die chemische Struktur der Kapselsubstanz des Milzbrandbazillus und der serologisch identischen spezifischen Substanz desBacillus mesentericus. Z. Immunitätsforsch Exp Ther 90: 304–318.

    Google Scholar 

  7. Thorne, C. B. and C. G. Leonard (1958) Isolation of D-and L-glutamyl polypeptides from culture filtrates ofBacillus subtilis.J. Biol. Chem. 233: 1109–1112.

    CAS  Google Scholar 

  8. Ward, R. M., R. F. Anderson, and F. K. Dean (1963) Polyglutamic acid production byBacillus subtilis NRRL B-2612 grown on wheat gluten.Biotechnol. Bioeng. 5: 41–48.

    Article  CAS  Google Scholar 

  9. Aumayr, A., T. Hara, and S. Ueda (1981) Transformation ofBacillus subtilis in polyglutamate production by coxyribonucleic acid fromB. natto.J. Gen. Appl. Microbiol. 27: 115–123.

    Article  CAS  Google Scholar 

  10. Kambourova, M., M. Tangney, and F. G. Priest (2001) Regulation of polyglutamic acid synthesis by glutamate inBacillus licheniformis andBacillus subtilis.Appl. Environ. Microbiol. 67: 1004–1007.

    Article  CAS  Google Scholar 

  11. Feng, S., X. Zhinan and C. Peilin, Efficient production of poly-γ-glutamic acid by a new strainBacillus Subtilis ZJU-7.Appl. Biochem. Biotechnol. In press.

  12. Chen, H. C. (1996) Optimizing the concentrations of carbon, nitrogen, and phosphorus in a citric acid fermentation with response surface method.Food Biotechnol. 10: 13–27.

    Article  CAS  Google Scholar 

  13. Rao, P. V., K. Jayaraman, and C. M. Lakshmanan (1993) Production of lipase byCandida rugosa in solid-state formentation. 2: Medium optimization and effect of aeration.Process Biochem. 28: 391–395.

    Article  CAS  Google Scholar 

  14. Harris, P. L., S. L. Cuppett, and L. B. Bullerman (1990) Optimization of lipase synthesis byPseudomonas fluorescens by response surface methodology.J. Food. Protect 53: 481–483.

    CAS  Google Scholar 

  15. Bazaraa, W. A. and E. E. Hassan (1996) Response surface optimization for the continuous glucose isomerization process.J. Ind. Microbiol. Biotechnol. 17: 100–103.

    CAS  Google Scholar 

  16. Maddox, I. S. and S. H. Richert (1977) Use of response surface methodology for the rapid optimization of microbiological media.J. Appl. Bacteriol. 43: 197–204.

    CAS  Google Scholar 

  17. Goto, A. and M. Kunioka (1992) Biosynthesis and hydrolysis of poly(γ-glutamic acid) fromBacillus subtilis IFO3335.Biosci. Biotechnol. Biochem. 56: 1031–1035.

    CAS  Google Scholar 

  18. Hansen, B. M. and N. B. Hendriksen (2001) Detection of enterotoxicBacillus cereus andBacillus thuringiensis strains by PCR analysis.Appl. Environ. Microbiol. 67: 185–189.

    Article  CAS  Google Scholar 

  19. Adinarayana, K., P. Ellaiah, B. Srinivasulu, R. Bhavani Devi, and G. Adinarayana (2003) Response surface methodological approach to optimize the nutritional parameters for neomycin production byStreptomyces marinensis under solid-state fermentation.Process Biochem. 38: 1565–1572.

    Article  CAS  Google Scholar 

  20. Strobel, R. J. and G. R. Sullivan (1999) Experimental design for improvement of fermentation. pp. 80–93. In: A. L. Demain and J. E. Davies (eds.).Manual of Industrial Microbiology and Biotechnology. 2nd ed, ASM Press, Washington, DC, USA.

    Google Scholar 

  21. Kennedy, M. and D. Krouse (1999) Strategies for improving fermentation medium performance: a review.J. Ind. Microbiol. Biotechnol. 23: 456–475.

    Article  CAS  Google Scholar 

  22. Ashiuchi, M., K. Tani, K. Soda, and H. Misono (1998) Properties of glutamate racemase fromBacillus subtilis IFO 3336 producing poly-γ-glutamate.J. Biochem. 123: 1156–1163.

    CAS  Google Scholar 

  23. Ogawa, Y., F. Yamaguchi, K. Yuasa, and Y. Tahara (1997) Efficient production of γ-poly glutamic acid byBacillus licheniformis (natto) in jar fermenters.Biosci. Biotechnol. Biochem. 61: 1684–1687.

    Article  CAS  Google Scholar 

  24. Kubota, H. (1993) production of poly(γ-glutamic acid) byBacillus subtilis F 201.Biosci. Biotechnol. Biochem. 57: 1212–1213.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhinan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, F., Xu, Z. & Cen, P. Optimization of γ-polyglutamic acid production byBacillus subtilis ZJU-7 using a surface-response methodology. Biotechnol. Bioprocess Eng. 11, 251–257 (2006). https://doi.org/10.1007/BF02932039

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932039

Keywords

Navigation