Skip to main content
Log in

Comparative studies of differential expression of chitinolytic enzymes encoded bychiA, chiB, chiC andnagA genes inAspergillus nidulans

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

N-Acetyl-d-glucosamine, chito-oligomers and carbon starvation regulatedchiA, chiB, andnagA gene expressions inAspergillus nidulans cultures. The gene expression patterns of the main extracellular endochitinase ChiB and theN-acetyl-β-d-glucosaminidase NagA were similar, and the ChiB-NagA enzyme system may play a morphological and/or nutritional role during autolysis. Alterations in the levels of reactive oxygen species or in the glutathione-glutathione disulfide redox balance, characteristic physiological changes developing in ageing and autolyzing fungal cultures, did not affect the regulation of either the growth-relatedchiA or the autolysis-coupledchiB genes although both of them were down-regulated under diamide stress. The transcription of thechiC gene with unknown physiological function was repressed by increased intracellular superoxide concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CBD:

chitin-binding domain

CV:

coefficient of variance

DCM:

dry cell mass

GlcNAc:

N-acetyl-d-glucosamine

(GlcNAc)2 :

N,N′-diacetylchitobiose

(GlcNAc)3 :

N,N′,N″-triacetylchitotriose

GlcNAcase:

β-N-acetylhexosaminidase (N-acetyl-β-d-glucosaminidase; EC 3.2.1.52)

GSH:

glutathione

GSSG:

glutathione disulfide

MSB:

2-methyl-1,4-naphthoquinone sodium hydrogen sulfite (‘menadione sodium bisulfite’)

NCBI:

National Center for Biotechnology Information

4NPGlcNAc:

4-nitrophenylN-acetyl-β-d-glucosaminide

4NP(GlcNAc)2 :

4-nitrophenylN,N′-diacetyl-β-d-chitobioside

4NP(GlcNAc)3 :

4-nitrophenylN,N′,N″-triacetyl-β-d-chitotrioside

ORF:

open reading frame

PMF:

peptide mass fingerprint

PSD:

post-source decay

ROS:

reactive oxygen species

RT-PCR:

real-time polymerase chain reaction

SD:

standard deviation

SDS:

sodium dodecyl sulfate

References

  • Adams D.J.: Fungal cell wall chitinases and glucanases.Microbiology 150, 2029–2035 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Aguirre J., Rios-Momberg M., Hewitt D., Hansberg V.: Reactive oxygen species and development in microbial eukaryotes.Trends Microbiol. 13, 111–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Bai Z., Harvey L.M., McNeil B.: Oxidative stress in submerged cultures of fungi.Crit.Rev.Biotechnol. 23, 267–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Barker S.A., Foster A.B., Stacey M., Webber J.M.: Amino-sugars and related compounds. Part IV. Isolation and properties of oligosaccharides obtained by controlled fragmentation of chitin.J.Chem.Soc. 2218–2227 (1958).

  • Barratt R.W., Johnson G.B., Ogata W.N.: Wild-type and mutant stocks ofAspergillus nidulans.Genetics 52, 233–246 (1965).

    CAS  PubMed  Google Scholar 

  • Binod P., Pusztahelyi T., Nagy V., Sandhya C., Szakacs G., Pócsi I., Pandey A.: Production and purification of extracellular chitinases fromPenicillium aculeatum NRRL 2129 under solid-state fermentation.Enzyme Microb.Technol. 36, 880–887 (2005).

    Article  CAS  Google Scholar 

  • Cabib E., Silverman S.J., Shaw J.A.: Chitinase and chitin synthase I: counterbalancing activities in cell separation ofSaccharomyces cerevisiae.J.Gen.Microbiol. 138, 97–102 (1992).

    CAS  PubMed  Google Scholar 

  • Chomczynski P.: A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples.Bio-Techniques 15, 532–536 (1993).

    CAS  Google Scholar 

  • Cohen E.: Chitin synthesis and degradation as target for pesticide action.Arch.Inst.Biochem.Physiol. 22, 245–261 (1993).

    Article  CAS  Google Scholar 

  • Emri T., Molnár Z., Pusztahelyi T., Rosen S., Pocsi I.: Effect of vitamin E on the autolysis and sporulation ofAspergillus nidulans.Appl.Biochem.Biotechnol. 118, 337–348 (2004a).

    Article  CAS  PubMed  Google Scholar 

  • Emri T., Molnár Z., Pusztahelyi T., Rosén S., Pócsi I.: Physiological and morphological changes in autolysingAspergillus nidulans cultures.Folia Microbiol. 49, 277–284 (2004b).

    Article  CAS  Google Scholar 

  • Emri T., Molnár Z., Pusztahelyi T., Varecza Z., Pócsi I.: The FluG-BrlA pathway contributes to the initialization of autolysis in submergedAspergillus nidulans cultures.Mycol.Res. 109, 757–763 (2005a).

    Article  CAS  PubMed  Google Scholar 

  • Emri T., Molnár Z., Pócsi I.: The appearances of autolytic and apoptotic markers are concomitant but differently regulated in carbon-starvingAspergillus nidulans cultures.FEMS Microbiol.Lett. 251, 297–303 (2005b).

    Article  CAS  PubMed  Google Scholar 

  • Escott G.M., Hearn V.M., Adams D.J.: Inducible chitinolytic system ofAspergillus fumigatus.Microbiology 144, 1575–1581 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Felse P.A., Panda T.: Regulation and cloning of microbial chitinase genes.Appl.Microbiol.Biotechnol. 51, 141–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Giczey G., Kerényi Z., Dallmann G., Hornok L.: Homologous transformation ofTrichoderma hamatum with an endochitinase encoding gene, resulting in increased levels of chitinase activity.FEMS Microbiol.Lett. 165, 247–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Gooday G.W., Zhu W.Y., O’Donnell R.W.: What are the roles of chitinases in the growing fungus?FEMS Microbiol.Lett. 100, 387–392 (1992).

    CAS  Google Scholar 

  • Harman D.: Free radical involvement in aging.Drugs Aging 3, 60–80 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Harman G.E., Hayes C.K., Lorito M., Broadway R.M., Di Pietro A., Peterbauer C., Tronsmo A.: Chitinolytic enzymes ofTrichoderma harzianum: purification of chitobiosidase and endochitinase.Phytopathology 83, 313–318 (1993).

    Article  CAS  Google Scholar 

  • Henrissat B.: Classification of chitinase modules, pp. 137–156 in P. Jollés, R.A.A. Muzzarelli (Eds):Chitin and Chitinases. Birkhauser, Basel (Switzerland) 1999.

    Google Scholar 

  • Horsch M., Mayer C., Rast D.M.: Stereochemical requirements of chitin synthase for ligand binding at the allosteric site forN-acetylglucosamine.Eur.J.Biochem. 237, 476–482 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Horsch M., Mayer C., Sennhauser U., Rast D.M.: β-N-Acetylhexosaminidase: a target for the design of antifungal agents.Pharmacol.Ther. 76, 187–218 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Imoto T., Yagashita K.: A simple activity measurement of lysozyme.Agric.Biol.Chem. 35, 1154–1156 (1971).

    CAS  Google Scholar 

  • Irene G., Jose M.L., De la Cruz J., Tahia B., Antonio L., Jose A., Pintor T.: Cloning and characterization of chitinase (CHIT 42) cDNA from mycoparasitic fungusTrichoderma harzianum.Curr.Genet. 27, 83–89 (1994).

    Article  Google Scholar 

  • Jacques A.K., Fukamizo T., Hall D., Barton R.C., Escott G.M., Parkinson T., Hichcock C.A., Adams D.J.: Disruption of the gene encoding the ChiB1 chitinase ofAspergillus fumigatus and characterization of recombinant gene product.Microbiology 149, 2931–2939 (2003).

    Article  Google Scholar 

  • Karaffa L., Sandor E., Kozma J., Szentirmai A.: Methionine enhances sugar composition, fragmentation, vacuolation and cephalosporin-C production inAcremonium chrysogenum.Process Biochem. 32, 495–499 (1997).

    Article  CAS  Google Scholar 

  • Kim S., Matsuo I., Ajisaka K., Nakajima H., Kitamoto K.: Cloning and characterization of thenagA gene that encodes β-N-acetyl-glucosaminidase fromAspergillus nidulans and its expression inAspergillus oryzae.Biosci.Biotechnol.Biochem. 66, 2168–2175 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Kitomoto Y., Mori N., Yamamoto M., Ohiwa T., Ichiwaka Y.: A simple method of protoplast formation and protoplast regeneration from various fungi using an enzyme fromTrichoderma harzianum.Appl.Microbiol.Biotechnol. 28, 445–450 (1988).

    Article  Google Scholar 

  • Kumar S., Tamura K., Nei M.: MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment.Brief Bioinf. 5, 150–163 (2004).

    Article  CAS  Google Scholar 

  • Kuranda M.J., Robbins P.W.: Chitinase is required for cell separation during growth ofSaccharomyces cerevisiae.J.Biol.Chem. 266, 19758–19767 (1991).

    CAS  PubMed  Google Scholar 

  • Leary N.O., Pembroke A., Duggan P.F.: Improving accuracy of glucose oxidase procedure for glucose determinations on discrete analyzers.Clin.Chem. 38, 298–302 (1992).

    CAS  PubMed  Google Scholar 

  • Mellor K.J., Nicholas R.O., Adams D.J.: Purification and characterization of chitinase fromCandida albicans.FEMS Microbiol.Lett. 119, 111–118 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Perkins D.N., Pappin D.J., Creasy D.M., Cottrell J.S.: Probability-based protein identification by searching sequence databases using mass spectrometry data.Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Pócsi I., Pusztahelyi T., Bogati M.S., Szentirman A.: The formation ofN-acetyl-β-d-hexosaminidase is repressed by glucose inPenicillium chrysogenum.J.Basic Microbiol. 33, 259–267 (1993).

    Article  Google Scholar 

  • Pócsi I., Sámi L., Leiter É., Majoros L., Szabó B., Emri T., Pusztahelyi T.: Searching for new-type antifungal drugs (an outline for possible new strategies).Acta Microbiol.Immunol.Hung. 48, 533–543 (2001).

    Article  PubMed  Google Scholar 

  • Pócsi I., Prade R.A., Penninckx M.J.: Glutathione, altruistic metabolite in fungi.Adv.Microb.Physiol. 49, 1–76 (2004).

    Article  PubMed  Google Scholar 

  • Pócsi I., Miskei M., Karanyi Z., Emri T., Ayoubi P., Pusztahelyi T., Balla G., Prade R.A.: Comparison of gene expression signatures of diamide, H2O2 and menadione exposedAspergillus nidulans cultures — linking genome-wide transcriptional changes to cellular physiology.BMC Genomics 6, article no. 182 (2005); http://www.biomedcentral.com/1471-2164/6/182.

  • Rast D.M., Horscht M., Furter R., Gooday G.W.: A complex chitinolytic system in exponentially growing mycelium ofMucor rouxii: properties and function.J.Gen.Microbiol. 137, 2797–2810 (1991).

    CAS  PubMed  Google Scholar 

  • Reichard U., Hung C.Y., Thomas P.W., Cole G.T.: Disruption of the gene which encodes a serodiagnostic antigen and chitinase of the human fungal pathogenCoccidioides immitis.Infect.Immun. 68, 5830–5838 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Sami L., Emri T., Pócsi I.: Autolysis and ageing ofPenicillium chrysogenum cultures under carbon starvation: glutathione metabolism and formation of reactive oxygen species.Mycol.Res. 105, 1246–1250 (2001a).

    Article  CAS  Google Scholar 

  • Sámi L., Pusztahelyi T., Emri T., Varecza Z., Fekete A., Grallert Á., Karányi Z., Kiss L., Pócsi I.: Autolysis and aging ofPenicillium chrysogenum cultures under carbon starvation: chitinase production and antifungal effect of allosamidin.J.Gen.Appl.Microbiol. 47, 201–211 (2001b).

    Article  PubMed  Google Scholar 

  • Sandhya C., Binod P., Nampoothiri K.M., Szakács G., Pandey A.: Microbial synthesis of chitinase in solid cultures and its potential as a biocontrol agent against phytopathogenic fungusColletotrichum gloeosporioides.Appl.Biochem.Biotechnol. 127, 1–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Sándor E., Pusztahelyi T., Karaffa L., Karányi Z., Pócsi I., Biró S., Szentirmai A., Pócsi I.: Allosamidin inhibits the fragmentation ofAcremonium chrysogenum but does not influence the cephalosporin-C production of the fungus.FEMS Microbiol.Lett. 164, 231–236 (1998).

    Article  PubMed  Google Scholar 

  • Shaban M., Jeanloz R.W.: The synthesis ofO-α-d-mannopyranosyl-(1→6)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→4)-2-acetamido-2-deoxy-d-glucose.Carbohydr.Res. 19, 311–318 (1971).

    Article  CAS  PubMed  Google Scholar 

  • Specht C.A., Benfield B.B., Garcia J.J.: Identification of bacteria-like chitinases in fungi. Accession no. AF314225.1;direct submission to NCBI (2000).

  • Taib M., Pinney J.W., Westhead D.R., McDowall K.J., Adams D.J.: Differential expression and extent of fungal/plant and fungal/bacterial chitinases ofAspergillus fumigatus.Arch.Microbiol. 184, 78–81 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Takaya N., Yamazaki D., Horiuchi H., Ohta A., Takagi M.: Cloning and characterization of a chitinase-encoding gene (chiA) fromAspergillus nidulans, disruption of which decreases germination frequency and hyphal growth.Biosci.Biotechnol.Biochem. 62, 60–65 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki H., Yamazaki D., Takaya N., Takagi M., Ohta A., Horiuchi H.: A chitinase gene,chiB, plays an important role in the autolytic process inAspergillus nidulans. Accession no. D87063.1;direct submission to NCBI (1996).

  • Yanagi S.O., Takebe I.: An efficient method for the isolation of mycelial protoplasts fromCaprinus macrorhizus and other basidiomycetes.Appl.Microbiol.Biotechnol. 12, 116–119 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Pócsi.

Additional information

The first author was a recipient of aHungarian Scientific Research Fund postdoctoral fellowship (OTKA grant no. D034568); the third author was a grantee of theBolyai János Scholarship. TheHungarian Ministry of Education awarded aSzéchenyi Scholarship for Professors to the last author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pusztahelyi, T., Molnár, Z., Emri, T. et al. Comparative studies of differential expression of chitinolytic enzymes encoded bychiA, chiB, chiC andnagA genes inAspergillus nidulans . Folia Microbiol 51, 547–554 (2006). https://doi.org/10.1007/BF02931619

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931619

Keywords

Navigation