Skip to main content
Log in

Studies of surface immunoglobulin-dependent B cell activation

  • Cellular Immunology
  • Published:
Immunologic Research Aims and scope Submit manuscript

Summary

Studies from a number of laboratories have firmly established the potential of surface immunoglobulin-generated signals in B lymphocyte activation. While clearly there are multiple ways of activating B lymphocytes, some of which may not involve surface immunoglobulin, it is clear that crosslinking of surface immunoglobulin whether by antigen or anti-receptor antibody can generate signals relevant to B cell activation. Although considerable insight into the mechanism of transduction of mIg-generated signals across the plasma membrane has been realized, a molecular explanation for linking inositol phospholipid hydrolysis to changes within the cytoplasm and nucleus of the B cells is still speculative. A more rigorous definition of the PKC and calcium components of the mIg signal transduction pathway are critical for a thorough understanding of the mechanism of signal transduction by this receptor. The use of tumor cell models allowing selection of mutants within the signalling pathway(s) will be invaluable to fully defining the critical molecular and biochemical events involved in B cell activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goding, J.W.: Allotypes of IgM and IgD receptors in the mouse: a probe for lymphocyte differentiation. Contemp. Top. Immunobiol.8: 203 (1978).

    PubMed  CAS  Google Scholar 

  2. Monroe, J.G.; Havran, W.L.; Cambier, J.C.: B lymphocyte activation: entry into cell cycle is accompanied by decreased expression of IgD but not IgM. Eur. J. Immunol.13: 208–213 (1983).

    PubMed  CAS  Google Scholar 

  3. Tucker, P.W.; Cheng, H.-L.; Richards, J.E.; Fitzmaurice, L.; Muchinski, J.F.; Blattner, F.R.: Genetic aspects of IgD expression. III. Functional implications of the sequence and organization of the Cdelta gene. Ann. N.Y. Acad. Sci.399: 26–38 (1982).

    PubMed  CAS  Google Scholar 

  4. Sieckmana, D.G.: The use of anti-immunoglobulins to induce a signal for cell division in B lymphocytes via their membrane IgM and IgD. Immunol. Rev.52: 181–208 (1980).

    Google Scholar 

  5. Parker, D.C.: Induction and suppression of polyclonal antibody responses by anti-Ig reagents and antigen-nonspecific helper factors: a comparison of the effects of anti-Fab, anti-IgM, and anti-IgD on murine B cells. Immunol. Rev.52: 115–138 (1980).

    PubMed  CAS  Google Scholar 

  6. Cambier, J.C.; Monroe, J.G.: B cell activation. V. Differentiation signaling a B cell membrane depolarization, increased I-A expression, Go to G1 transition, and thymidine uptake by anti-IgM and anti-IgD antibodies. J. Immun.133: 576–581 (1984).

    PubMed  CAS  Google Scholar 

  7. Chen, Z.Z.; Coggeshall, K.M.; Cambier, J.C.: Translocation of protein kinase C during membrane immunoglobulin-mediated transmembrane signaling in B lymphocytes. J. Immun.136: 2300–2304 (1986).

    PubMed  CAS  Google Scholar 

  8. Mizuguchi, J.; Tsang, W.; Morrison, S.L.; Beaven; Paul, W.E.: Membrane IgM, IgD, and IgG act as signal transmission molecules in a series of B lymphomas. J. Immun.137: 2162–2167 (1986).

    PubMed  CAS  Google Scholar 

  9. Coutinho, A.; Moller, G.: Immune activation of B cells: evidence for ‘one nonspecific signal’ not delivered by the Ig receptors. Scand. J. Immunol.3: 133–146 (1974).

    PubMed  CAS  Google Scholar 

  10. Coutinho, A.: The theory of the ‘one nonspecific signal’ model for B cell activation. Transplant. Rev.23: 49–65 (1975).

    PubMed  CAS  Google Scholar 

  11. Cammisuli, S.; Henry, C.; Wofsy, L.: Role of membrane receptors in the induction of an in vitro secondary anti-hapten response. I. Differentiation of B memory cells to plasma cells is independent of antigen-immunoglobulin receptor interaction. Eur. J. Immunol.8: 656–662 (1978).

    PubMed  CAS  Google Scholar 

  12. Cammisuli, S.; Henry, C.: Role of membrane receptors in the induction of an in vitro secondary anti-hapten response. II. Antigen-immunoglobulin receptor interaction is not required for B memory cell proliferation. Eur. J. Immunol.8: 662–666 (1978).

    PubMed  CAS  Google Scholar 

  13. Tony, H.-P.; Phillips, N.E.; Parker, D.C.: Role of membrane immunoglobulin (Ig) crosslinking in membrane Ig-mediated, major histocompatibility-restricted T cell-B cell cooperation. J. exp. Med.162: 1695–1708 (1985).

    PubMed  CAS  Google Scholar 

  14. Leclercq, L.; Cambier, J.C.; Mishal, Z.; Julius, M.H.; Theze, J.: Supernatant from a cloned helper T cell stimulates most small resting B cells to undergo increased IA expression, blastogenesis, and progression through cell cycle. J. Immun.136: 539–545 (1986).

    PubMed  CAS  Google Scholar 

  15. Clayberger, C.; DeKruyff, R.H.; Fay, R.; Cantor, H.: Identification of a novel B cell stimulating factor produced by a cloned dendritic cell. Proc. natn. Acad. Sci. USA82: 183 (1985).

    CAS  Google Scholar 

  16. Clayberger, C.; DeKruyff, R.H.; Fay, R.; Pavlakis, M.; Cantor, H.: Immunoregulation of T dependent responses by a cloned dendritic cell. J. Immun.133: 1174 (1984).

    PubMed  CAS  Google Scholar 

  17. Julius, M.H.; von Boehmer, H.; Sidman, C.L.: Dissociation of two signals required for activation of resting B cells. Proc. natn. Acad. Sci. USA79: 1989–1993 (1982).

    CAS  Google Scholar 

  18. Andersson, J.; Schreier, M.H.; Melchers, F.: T-cell dependent B-cell stimulation is H-2 restricted and antigen dependent only at the resting B-cell level. Proc. natn. Acad. Sci. USA77: 1612–1616 (1980).

    CAS  Google Scholar 

  19. Schreier, M.H.; Andersson, J.; Lernhardt, W.; Melchers, F.: Antigen-specific T-helper cells stimulate H-2-compatible and H-2-incompatible B-cell plasts polyclonally. J. exp. Med.151: 194–203 (1980).

    PubMed  CAS  Google Scholar 

  20. Andersson, J.; Melchers, F.: T cell-dependent activation of resting B cells: requirement for both nonspecific unrestricted and antigen-specific Ia-restricted soluble factors. Proc. natn. Acad. Sci. USA78: 2497–2501 (1981).

    Google Scholar 

  21. LoCascio, N.J.; Haughton, G.; Arnold, L.W.; Corley, R.B.: Role of cell surface immunoglobulin in B-lymphocyte activation. Proc. natn. Acad. Sci. USA81: 2466–2469 (1984).

    CAS  Google Scholar 

  22. Sell, S.; Gell, P.G.H.: Studies on rabbit lymphocytes in vitro. I. Stimulation of blast transformation with an anti-allotypic serum. J. exp. Med.122: 423–439 (1965).

    PubMed  CAS  Google Scholar 

  23. Primi, D.; Lewis, G.K.; Goodman, J.W.: The role of immunoglobulin receptors and T cell mediators in B lymphocyte activation. I. B cell activation by anti-immunoglobulin and anti-idiotype reagents. J. Immun.125: 1286–1292 (1980).

    PubMed  CAS  Google Scholar 

  24. Rosenberg, J.S.; Feldman, J.D.: Activation of rat B lymphocytes. I. Characterization of anti-immunoglobulin responses and isotype density of rat B cells. J. Immun.128: 651–655 (1982).

    PubMed  CAS  Google Scholar 

  25. Zitron, I.M.; Clevinger, B.L.: Regulation of murine B cells through surface immunoglobulin. I. Monoclonal anti-delta antibody that induces allotype-specific proliferation. J. exp. Med.152: 1135–1146 (1980).

    PubMed  CAS  Google Scholar 

  26. Pure, E.; Vitetta, E.: Induction of murine B cell proliferation by insolubilized anti-immunoglubulins. J. Immun.125: 1240–1242 (1980).

    PubMed  CAS  Google Scholar 

  27. DeFranco, A.L.; Raveche, E.S.; Asofsky, R.; Paul, W.E.: Frequency of B lymphocytes responsive to anti-immunoglobulin. J. exp. Med.155: 1523–1536 (1982).

    PubMed  CAS  Google Scholar 

  28. Melchers, F.; Andersson, J.; Lernhardt, W.; Schreier, M.H.: Roles of surface-bound immunoglobulin molecules in regulating the replication and maturation to immunoglobulin secretion of B lymphocytes. Immunol. Rev.52: 89–114 (1980).

    PubMed  CAS  Google Scholar 

  29. Cooper, M.D.; Kearney, J.F.; Gathings, W.E.; Lawton, A.R.: Effects of anti-Ig antibodies on the development and differentiation of B cells. Immunol. Rev.52: 29–53 (1980).

    PubMed  CAS  Google Scholar 

  30. Braun, J.; Unanue, E.R.: B lymphocyte biology studies with anti-Ig antibodies. Immunol. Rev.52: 3–28 (1980).

    PubMed  CAS  Google Scholar 

  31. Mond, J.J.; Segal, E.; Kung, J.; Finkleman, F.D.: Increased expression of I-region-associated antigen (Ia) on B cells after cross-linking of surface immunoglobulin. J. Immun.127: 881–886 (1981).

    PubMed  CAS  Google Scholar 

  32. Monroe, J.G.; Cambier, J.C.: B cell activation. III. B cell plasma membrane depolarization and hyper-Ia antigen expression induced by receptor immunoglobulin cross-linking are coupled. J. exp. Med.158: 1589–1599 (1983).

    PubMed  CAS  Google Scholar 

  33. Parker, D.C.; Wadsworth, D.C.; Schneider, G.B.: Activation of murine B lymphocytes by anti-immunoglobulin is an inductive signal leading to immunoglobulin secretion. J. exp. Med.152: 138–150 (1980).

    PubMed  CAS  Google Scholar 

  34. DeFranco, A.L.; Raveche, E.S.; Paul, W.E.: Separate control of B lymphocyte early activation and proliferation in response to anti-IgM antibodies. J. Immun.135: 87–94 (1985).

    PubMed  CAS  Google Scholar 

  35. Cambier, J.C.; Monroe, J.G.; Neale, M.J.: Definition of conditions that enable antigen-specific activation of the majority of isolated trinitrophenol-binding B cells. J. exp. Med.156: 1635–1649 (1982).

    PubMed  CAS  Google Scholar 

  36. Snow, E.C.; Fetherston, J.D.; Zimmer, S.: Induction of the c-myc protooncogene after antigen binding to hapten-specific B cells. J. exp. Med.164: 944–949 (1986).

    PubMed  CAS  Google Scholar 

  37. Coughlin, S.R.; Lee, W.M.F.; Williams, P.W.; Giels, G.M.; Williams, L.T.: C-myc gene expression is stimulated by agents that activate protein kinase C and does not account for the mitogenic effect of PDGF. Cell43: 243–251 (1985).

    PubMed  CAS  Google Scholar 

  38. Reed, J.C.; Nowell, P.C.; Hoover, R.G.: Regulation of c-myc mRNA levels in normal human lymphocytes by modulators of cell proliferation. Proc. natn. Acad. Sci. USA82: 4221–4224 (1985).

    CAS  Google Scholar 

  39. Kaibuchi, K.; Tsuda, T.; Kikuchi, A.; Tanimoto, T.; Yamashita, T.; Takai, Y.: Possible involvement of protein kinase C and calcium ion in growth factor-induced expression of c-myc oncogene in Swiss 3T3 fibroblasts. J. biol. Chem.261: 1187–1192 (1985).

    Google Scholar 

  40. Armelin, H.A.; Armelin, M.C.S.; Kelly, K.; Stewart, T.; Leder, P.; Cochran, B.H.; Stiles, C.D.: Functional role for c-myc in mitogenic response to platelet-derived growth factor. Nature, Lond.310: 655–660 (1984).

    CAS  Google Scholar 

  41. Krieger, J.I.; Grammer, S.F.; Grey, H.M.; Chesnut, R.W.: Antigen presentation by splenic B cells: resting B cells are ineffective, whereas activated B cells are effective accessory cells for T cell responses. J. Immun.135: 2937–2945 (1985).

    PubMed  CAS  Google Scholar 

  42. Monroe, J.G.; Cambier, J.C.: Level of mIa expression on mitogen-stimulated murine B lymphocytes is dependent on position in cell cycle. J. Immun.130: 626–631 (1983).

    PubMed  CAS  Google Scholar 

  43. Roehm, N.W.; Leibson, H.J.; Zlotnik, A.; Kappler, J.; Marrack, P.; Cambier, J.C.: Interleukin-induced increase in Ia expression by normal mouse B cells. J. exp. Med.160: 679–694 (1984).

    PubMed  CAS  Google Scholar 

  44. Singer, A.; Morrissey, P.J.; Hathcock, K.S.; Ahmed, A.; Scher, I.; Hodes, R.J.: Role of the major histocompatibility complex in T cell activation of B cell subpopulation. Lyb-5+ and Lyb-5- B cell subpopulation differ in their requirement for major histocompatibility complex-restricted T cell recognition. J. exp. Med.154: 501 (1981).

    PubMed  CAS  Google Scholar 

  45. Mond, J.J.: Use of the T lymphocyte regulated type 2 antigens for the analysis of responsiveness of Lyb-5+ and Lyb-5- B lymphocytes to T lymphocyte derived factors. Immunol. Rev.64: 99 (1982).

    PubMed  CAS  Google Scholar 

  46. Pozzan, T.; Arslan, P.; Tsien, R.Y.; Rink, T.J.: Anti-immunoglobulin, cytoplasmic free calcium, and capping in B lymphocytes. J. Cell Biol.94: 335 (1982).

    PubMed  CAS  Google Scholar 

  47. Ransom, J.T.; Digiusto, D.L.; Cambier, J.C.: Single cell analysis of calcium mobilization in anti-immunoglobulin-stimulated B lymphocytes. J. Immun.136: 54–57 (1986).

    PubMed  CAS  Google Scholar 

  48. Tsien, R.Y.; Pozzan, T.; Rink, T.J.: Calcium homeostatis in intact lymphocytes: cytoplasmic free calcium monitored with a new intracellularly trapped fluorescence indicator. J. Cell Biol.94: 325 (1982).

    PubMed  CAS  Google Scholar 

  49. Maino, V.C.; Hayman, M.J.; Crumpton, M.J.: Relationship between enhanced turnover of phosphatidylinositol and lymphocyte activation by mitogens. Biochem. J.146: 247–252 (1975).

    PubMed  CAS  Google Scholar 

  50. Nishizuka, Y.: Turnover of inositol phospholipids and signal transduction. Science225: 1365–1370 (1984).

    PubMed  CAS  Google Scholar 

  51. Dittmer, J.C.; Dawson, R.M.C.: The isolation of a new lipid, triphosphoinositide, and monophosphoinositide from ox brain. Biochem. J.81: 535–540 (1961).

    PubMed  CAS  Google Scholar 

  52. Brockerhoff, N.; Ballou, C.: The structure of the phosphoinositide complex of beef brain. J. biol. Chem.236: 1907–1911 (1961).

    CAS  Google Scholar 

  53. Kurosawa, M.; Parker, C.W.: A phosphatidylinositol kinase in rat mast cell granules. J. Immun.136: 616–622 (1986).

    PubMed  CAS  Google Scholar 

  54. Kai, M.; Salway, J.G.; Michell, R.H.; Hawthorne, J.N.: The biosynthesis of triphosphinositide by rat brain in vitro. Biochem. biophys. Res. Commun.22: 370–375 (1966).

    CAS  Google Scholar 

  55. Michell, R.H.: Inositol phospholipids in membrane function. Trends biochem. Sci.6: 128–131 (1979).

    Google Scholar 

  56. Hokin, M.R.; Hokin, L.E.: Enzyme secretion and the incorporaiton of 32P into phospholipids of pancreas slices. J. biol. Chem.203: 967–977 (1953).

    PubMed  CAS  Google Scholar 

  57. Abdel-Latif, A.A.; Akhtar, R.A.; Hawthorne, J.N.: Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with [32P]-phosphate. Biochem. J.162: 61–73 (1977).

    PubMed  CAS  Google Scholar 

  58. Downes, P.; Michell, R.H.: Phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate: lipids in search of a function. Cell Calcium3: 467–502 (1982).

    PubMed  CAS  Google Scholar 

  59. Agranoff, B.W.; Murthy, P.; Sequin, E.B.: Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets. J. biol. Chem.258: 2076–2078 (1983).

    PubMed  CAS  Google Scholar 

  60. Berridge, M.J.; Dawson, R.M.C.; Downes, C.P.; Heslop, J.P.; Irvine, R.F.: Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem. J.212: 473–482 (1983).

    PubMed  CAS  Google Scholar 

  61. Fisher, S.K.; van Rooijen, L.A.A.; Agranoff, B.W.: Renewed interest in the polyphosphoinositides. Trends biochem. Sci.9: 53–56 (1984).

    CAS  Google Scholar 

  62. Takai, Y.; Kishimoto, A.; Kikkawa, U.; Mori, T.; Nishizuka, Y.: Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system. Biochem. biophys. Res. Commun.91: 1218–1224 (1979).

    PubMed  CAS  Google Scholar 

  63. Kishimoto, A.; Takai, Y.; Mori, T.; Kikkawa, U.; Nishizuka, Y.: Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J. biol. Chem.255: 2273–2276 (1980).

    PubMed  CAS  Google Scholar 

  64. Cerione, R.A.; Stralovici, B.; Benovic, J.L.; Lefkowitz, R.J.; Caron, M.G.: Pure B-adrenergic receptor: the single polypeptide confers catecholamine responsiveness to adenylate cyclase. Nature, Lond.306: 562–566 (1984).

    Google Scholar 

  65. Joseph, S.K.; Thomas, A.P.; Williams, R.J.; Irvine, R.F.; Williamson, J.R.: Myo-inositol, 1,4,5-trisphosphate. J. biol. Chem.259: 3077–3081 (1984).

    PubMed  CAS  Google Scholar 

  66. Dawson, A.P.; Irvine, R.F.: Inositol (1,4,5)-trisphosphate-promoted Ca2+ release from microsomal fractions of rat liver. Biochem. biophys. Res. Commun.120: 858–864 (1984).

    PubMed  CAS  Google Scholar 

  67. Prentki, M.; Biden, T.J.; Janjic, D.; Irvine, R.F.; Berridge, M.J.; Wollheim, C.B.: Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate. Nature, Lond.309: 562–564 (1984).

    CAS  Google Scholar 

  68. Monroe, J.G.; Niedel, J.E.; Cambier, J.C.: B cell activation. IV. Induction of cell membrane depolarization and hyper-IA expression by phorbol diesters suggests a role for protein kinase C in murine B lymphocyte activation. J. Immun.132: 1472–1478 (1984).

    PubMed  CAS  Google Scholar 

  69. Cambier, J.C.; Monroe, J.G.; Coggeshall, K.M.; Ransom, J.T.: On the mechanism of transmembrane signalling by B lymphocyte surface immunoglobulin. Immunol. Today6: 218 (1985).

    CAS  Google Scholar 

  70. Bottomly, K.; Jones, B.; Kaye, J.; Jones, F., III: Subpopulations of B cells distinguished by cell surface expression of Ia antigens. J. exp. Med.158: 265 (1983).

    PubMed  CAS  Google Scholar 

  71. Henry, C.; Chan, E.L.; Kodlin, D.: Expression and function of I region products on immunocompetent cells. II. I region products in T-B interaction. J. Immun.119: 744 (1977).

    PubMed  CAS  Google Scholar 

  72. Coggeshall, K.M.; Cambier, J.C.: B cell activation. VIII. Membrane immunoglobulins transduce signals via activation of phosphatidylinositol hydrolysis. J. Immun.133: 3382–3386 (1985).

    Google Scholar 

  73. Bijsterbosch, M.K.; Meade, C.J.; Turner, G.A.; Klaus, G.G.B.: B lymphocyte receptors and polyphosphoinositide degradation. Cell41: 999–1006 (1985).

    PubMed  CAS  Google Scholar 

  74. Ransom, J.T.; Harris, L.K.; Cambier, J.C.: Anti-Ig induces release of inositol 1,4,5-trisphosphate, which mediates mobilization of intracellular Ca2+ stores in B lymphocytes. J. Immun.137: 708–714 (1986).

    PubMed  CAS  Google Scholar 

  75. Ransom, J.T.; Cambier, J.C.: B cell activation. VII. Independent and synergistic effects of mobilized calcium and diacylglycerol on membrane potential and IA expression. J. Immun.136: 66–72 (1986).

    PubMed  CAS  Google Scholar 

  76. Coggeshall, K.M.; Cambier, J.C.: B cell activation. VI. Effects of exogenous diglyceride and modulators of phospholipid metabolism suggest a central role for diacylglycerol generation in transmembrane signalling by mIg. J. Immun.134: 101–107 (1985).

    PubMed  CAS  Google Scholar 

  77. Rittenhouse, S.E.: Human platelets contain phospholipase C that hydrolyzes polyphosphoinositides. Proc. natn. Acad Sci. USA80: 5417–5420 (1983).

    CAS  Google Scholar 

  78. Smith, C.D.; Cox, C.C.; Snyderman, R.: Receptor-coupled activation of phosphoinositide-specific phospholipase C by an N protein. Science232: 97–100 (1986).

    PubMed  CAS  Google Scholar 

  79. J. Rec. Res.4: 605 (1984).

  80. Cockcroft, S.; Gomperts, B.D.: Role of guanine nucleotide binding protein in the activation of phosphoinositide phosphodiesterase. Nature, Lond.314: 534–536 (1985).

    CAS  Google Scholar 

  81. Litosch, I.; Wallis, C.; Fain, L.: 5-Hydroxytryptamine stimulates inositol phosphate production in a cell free system from blowfly salivary glands. J. biol. Chem.260: 5464–5471 (1985).

    PubMed  CAS  Google Scholar 

  82. Nakamura, T.; Ui, M.: Simultaneous inhibition of inositol phospholipid breakdown, arachadonic acid release, and histamine secretion in mast cells by islet-activating protein, pertussis toxin. J. biol. Chem.260: 3584–3593 (1985).

    PubMed  CAS  Google Scholar 

  83. J. biol. Chem.260: 7226 (1985).

  84. Higashida, H.; Streaty, R.A.; Klee, W.; Nirenberg, M.: Bradykinin-activated transmembrane signals are coupled via No or N1 production of inositol 1,4,5-trisphosphate, a second messenger in NG108-15 neuroblastoma-glioma hybrid cells. Proc. natn. Acad. Sci. USA83: 942–946 (1986).

    CAS  Google Scholar 

  85. Martin, M.W.; Evans, T.; Harden, T.K.: Further evidence that muscarinic cholinergic receptors of 132N1 astrocytoma cells couple to a guanine nucleotide regulatory protein that is not N1. Biochem. J.229: 539–544 (1985).

    PubMed  CAS  Google Scholar 

  86. Merritt, J.E.; Taylor, C.W.; Rubin, R.P.; Putney, J.W., Jr.: Evidence suggesting that a novel guanine nucleotide regulatory protein couples receptors to phospholipase C in exocrine pancreas. Biochem. J.236: 337–343 (1986).

    PubMed  CAS  Google Scholar 

  87. Niedel, J.E.; Kuhn, L.J.; Vanderbark, G.R.: Phorbol diester receptor co-purifies with protein kinase. C. Proc. natn. Acad. Sci. USA80: 36–41 (1983).

    CAS  Google Scholar 

  88. Shoyab, M.; Todaro, G.J.: Specific high affinity cell membrane receptors for biologically active phorbol and ingenol esters. Nature, Lond.288: 451–455 (1980).

    CAS  Google Scholar 

  89. Nishizuka, Y.; Takai, Y.; Kishimoto, A.; Kikkawa, U.; Kaibuchi, K.: Phospholipid turnover in hormone action. Recent Prog. Horm. Action40: 301–340 (1984).

    CAS  Google Scholar 

  90. Monroe, J.G.; Cambier, J.C.: Sorting of B lymphoblasts based upon cell diameter provides cell population enriched in different stages of cell cycle. J. Immunol. Methods63: 45–56 (1983).

    PubMed  CAS  Google Scholar 

  91. Darzynkiewicz, Z.; Traganos, F.; Melamed, M.R.: New cell cycle compartments identified by multiparameter flow cytometry. Cytometry1: 98 (1980).

    PubMed  CAS  Google Scholar 

  92. Darzynkiewicz, Z.; Traganos, F.; Sharpless, T.; Melamed, M.R.: Lymphocyte stimulation: a rapid multiparameter analysis. Proc. natn. Acad. Sci. USA73: 2881 (1976).

    CAS  Google Scholar 

  93. Monroe, J.G.; Kass, M.J.: Molecular events in B cell activation. I. Signals required to stimulate Go to G1 transition of resting B lymphocytes. J. Immun.135: 1674–1682 (1985).

    PubMed  CAS  Google Scholar 

  94. Monroe, J.G.; Gaulton, G.N.: Comparison of protein phosphorylation induced by mitogen and phorbol diester stimulation of murine T and B lymphocytes. Surv. immunol. Rev.4: 192–199 (1985).

    CAS  Google Scholar 

  95. Kelly, K.; Cochran, B.H.; Stiles, C.D.; Leder, P.: Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell35: 603–610 (1983).

    PubMed  CAS  Google Scholar 

  96. Knight, E.; Anton, E.D.; Fahley, D.; Friedland, B.K.; Jonak, G.J.: Interferon regulates c-myc gene expression in Daudi cells at the post-transcriptional level. Proc. natn. Acad. Sci. USA82: 1151–1154 (1985).

    CAS  Google Scholar 

  97. Campisi, J.; Gray, H.E.; Pardee, A.B.; Dean, M.; Sonenshein, G.E.: Cell-cycle control of c-myc but not c-ras expression is lost following chemical transformation. Cell36: 241–247 (1984).

    PubMed  CAS  Google Scholar 

  98. Greenberg, M.E.; Ziff, E.B.: Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature, Lond.311: 433 (1984).

    CAS  Google Scholar 

  99. Sorrentino, V.: Proc. natn. Acad. Sci. USA83: 8167 (1986).

    CAS  Google Scholar 

  100. Ran, W.; Dean, M.; Levine, R.A.; Henkle, C.; Campisi J.: Induction of c-fos and c-myc mRNA by epidermal growth factor or calcium ionophore is cAMP dependent. proc. natn. Sci. USA83: 8216 (1986).

    CAS  Google Scholar 

  101. Kruijer, W.; Cooper, J.A.; Hunter, T.; Verma, I.M.: Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein. Nature, Lond.312: 711–716 (1984).

    CAS  Google Scholar 

  102. Bravo, R.; Burckhardt, J.; Curran, T.; Muller, R.: Stimulation and inhibition of growth by EGF in different A431 cell clones is accompanied by the rapid induction of c-foc and c-myc proto-oncogenes. Eur. molec. Biol. Org. J.4: 1193–1197 (1985).

    CAS  Google Scholar 

  103. Curran, T.: Viral and cellular fos proteins: a comparative analysis. Cell36: 259–268 (1984).

    PubMed  CAS  Google Scholar 

  104. Persson, H.; Leder, P.: Nuclear localization and DNA binding properties of a protein expressed by human c-myc oncogene. Science225: 718–720 (1984).

    PubMed  CAS  Google Scholar 

  105. Boyd, A.W.; Schrader, J.W.: The regulation of growth and differentiation of a murine B cell lymphoma. II. The inhibition of WEHI-231 by anti-immunoglobulin antibodies. J. Immun.126: 2466–2469 (1981).

    PubMed  CAS  Google Scholar 

  106. LaBaer, J.; Tsien, R.Y.; Fahey, K.A.; DeFranco, A.L.: Stimulation of the antigen receptor on WEHI-231 B lymphoma cells results in a voltage-independent increase in cytoplasmic calcium. J. Immun.137: 1836–1844 (1986).

    PubMed  CAS  Google Scholar 

  107. Monroe, J.G.; Cambier, J.C.: B cell activation. I. Anti-immunoglobulin-induced receptor cross-linking results in a decrease in the plasma membrane potential of murine B lymphocytes. J. exp. Med.157: 2073–2086 (1983).

    PubMed  CAS  Google Scholar 

  108. LoCascio, N.J.; Haughton, G.; Arnold, L.W.; Corley, R.B.: Role of cell surface immunoglobulin in B-lymphocyte activation. Proc. natn. Acad. Sci. USA81: 2466–2469 (1984).

    CAS  Google Scholar 

  109. Scott, D.W.; Livnat, D.; Pennell, C.A.; Keng, P.: Lymphoma models for B cell activation and tolerance. II. Growth inhibition by anti-u of WEHI-231 and the selection and properties of resistant mutants. Cell. Immunol.93: 124–133 (1985).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monroe, J.G., Seyfert, V.L. Studies of surface immunoglobulin-dependent B cell activation. Immunol Res 7, 136–151 (1988). https://doi.org/10.1007/BF02918097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02918097

Keywords

Navigation