Skip to main content
Log in

Hepatic tissue distribution of doxorubicin-loaded nanoparticles after i.v. administration in reticulosarcoma M 5076 metastasis-bearing mice

  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Summary

In our previous studies, doxorubicin-loaded polyisohexylcyanoacrylate nanoparticles have been proven to increase dramatically the antitumoral activity of the cytotoxic agent in metastasis-bearing mice. The experimental model consisted of metastases induced by i.v. inoculation of reticulosarcoma M 5076 cell suspension to C57BL/6 mice. The improved efficacy of the drug was noted in terms of either metastasis count or survival. Therefore, tissue-distribution studies of this drug delivery system within the metastatic liver after i.v. administration were undertaken to gain more insight into the mechanism of action. Doxorubicin measurements in healthy hepatic or neoplastic tissue were carried out together with histological examinations using transmission electron microscopy. These results demonstrated the hepatic tissue to be an efficient reservoir of the drug when it was injected associated with nanoparticles. Accumulation of biodegradable nanoparticles with associated doxorubicin in Kupffer cells created a gradient of drug concentration for a massive and prolonged diffusion of the free drug towards the neoplastic tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alessandri G, Giavazzi R, Falautano P, Spreafico F, Garattini S, Mantovani A (1981) A murine ovarian tumor with unique metastasizing capacity. Eur J Cancer 17 (6): 651

    PubMed  CAS  Google Scholar 

  2. Chiannilkulchai N, Driouich Z, Benoit JP, Parodi AL, Couvreur P (1989) Doxorubicin-loaded nanoparticles: increased efficiency against murine hepatic metastases. Sel Cancer Ther 5 (1): 1

    PubMed  CAS  Google Scholar 

  3. Couvreur P, Roland M, Speiser P (1982) United States patent 4329332. United States Patent Office, Washington DCC

  4. Couvreur P, Kante B, Grislain L, Roland M, Speiser P (1982) Toxicity of polyalkylcyanoacrylate nanoparticles: II. Doxorubicin loaded nanoparticles. J Pharm Sci 71: 790

    Article  PubMed  CAS  Google Scholar 

  5. Couvreuer P, Lenaerts V, Grislain L, Vansnick L, Brasseur F (1985) Drug targeting by means of biodegradable polymeric nanoparticles: In: Buri P, Gamma A (eds) Drug targeting. Elsevier, Amsterdam, pp 35

    Google Scholar 

  6. Couvreur P, Grislain L, Lenaerts V, Brasseur F, Guiot P, Biernacki A (1986) Biodegrable polymeric nanoparticles as drug carrier for antitumor agents. In: Guiot P, Couvreuer P (eds) Polymeric nanoparticles and microspheres. CRC, Boca Raton, Florida, p 27

    Google Scholar 

  7. Gabizon A, Dagan A, Goren D, Barenholz Y, Fuks Z (1982) Liposomes as in-vivo carriers of Adriamycin: reduced cardiac uptake and presented antitumor activity. Cancer Res 42: 4734

    PubMed  CAS  Google Scholar 

  8. Gabizon A, Goren D, Fuks Z, Meshorer A, Barenholz Y (1983) Superior therapeutic activity of liposome-associated Adriamycin in a murine metastatic tumor model. Br J Cancer 51: 681

    Google Scholar 

  9. Grislain L, Couvreuer P, Lenaerts V, Roland M, Deprez-Decampeneere D, Speiser P (1983) Pharmacokinetics and distribution of a biodegradable drug-carrier. Int J Pharm 15: 335

    Article  CAS  Google Scholar 

  10. Juliano RL, Stamp D (1978) Pharmacokinetics of liposome-encapsulated anti-tumor drugs; studies with vinblastine, actinomycin D, cytosine arabinoside and daunomycin. Biochem Pharmacol 27: 21

    Article  PubMed  CAS  Google Scholar 

  11. Lautersztein J, Perez-Soler R, Turpin J, Khokhar AR, Siddik ZH, Schmidt K, Lopez-Berestein G (1988) Cellular pharmacology of liposomalcis-bis-neodecanoate-trans-R,t-1-2-diaminocyclohexane-platinum(II) in mouse resident peritoneal macrophages, Kupffer cells and hepatocytes. Cancer Res 48: 1300

    Google Scholar 

  12. Lenaerts V, Nagerkerke JF, Van Berkel TJC, Couvreur P, Grislain L, Roland M, Speiser P (1984) In-vivo uptake of polyisobutylcy-anoacrylate nanoparticles by rat liver Kupffer, endothelial and parenchymal cells. J Pharm Sci 73: 980

    Article  PubMed  CAS  Google Scholar 

  13. Mayhew E, Rustum Y, Vail WS (1983) Inhibition of metastases of M 5076 tumor by liposome-entrapped Adriamycin. Cancer Drug Deliv 1: 43

    PubMed  CAS  Google Scholar 

  14. Mayhew E, Goldrosen M, Vaage J, Rustum Y (1986) Liposomal Adriamycin and survival of mice bearing liver metastases of colon carcinoma 26 or 38. Proc Am Assoc Cancer Res 27: 40

    Google Scholar 

  15. Perez-Soler R, Khokhar AR, Lautersztein J, Mitchell PA, Schmidt KL (1987) Ultrastructural and freeze fracture localization of multilamellar liposomes containing a lipophilic cisplatin analogue in normal tissues and liver metastases of M5076 reticulosarcoma. Cancer Drug Deliv 4 (2): 75

    PubMed  CAS  Google Scholar 

  16. Perez-Soler R, Khorkhar AR, Lopez-Berestein G (1987) Treatment and prophylaxis of experimental liver metastases of M5076 reticulosarcoma withcis-bis-neodecanoate-trans-R-R-1,2-diamminecyclohexaneplatinum(II) encapsulated in multilamellar vesicles. Cancer Res 47: 6462

    PubMed  CAS  Google Scholar 

  17. Poste G (1983) Liposomes targeting in-vivo: problems and opportunities. Biol Cell 47: 19

    CAS  Google Scholar 

  18. Rolland A (1987) Mise au point et applications de nanosphères à base de copolymères méthacryliques. Intérêt pour la vectorisation d’agents cytostatiques (anthracyclines). Ph. D. Thesis 1, Université de Rennes I, Faculté de Pharmacie, Rennes, France

  19. Simpson-Herren L, Griswold DP, Dykes DJ (1979) Population kinetics and chemotherapeutic response of transplantation ovarian carcinoma M5076. Proc Am Assoc Cancer Res 20: 320

    Google Scholar 

  20. Talmadge JE, Key ME, Hart IR (1981) Characterization of a murine ovarian reticulum cell sarcoma of histiocytic origin. Cancer Res 41: 1271

    PubMed  CAS  Google Scholar 

  21. Van Hoesel QGCM, Steerenberg PA, Crommelin DJA, van Dijk A, van Oort W, Klein S, Douze JMC, De Wildt DJ, Hillen FC (1984) Reduced cardiotoxicity and nephrotoxicity with preservation of antitumor activity of doxorubicin entrapped in stable liposomes in LOU/M wsl rat. Cancer Res 44: 3698

    PubMed  Google Scholar 

  22. Verdun C, Couvreur P, Vranckx H, Lenaerts V, Roland M (1986) Development of a nanoparticle controlled-release formulation for human use. J Controlled Release 3: 205

    Article  CAS  Google Scholar 

  23. Weinstein JN, Leserman LD (1984) Liposomes as drug carriers in cancer chemotherapy. Pharmacol Ther 24: 207

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiannilkulchai, N., Ammoury, N., Caillou, B. et al. Hepatic tissue distribution of doxorubicin-loaded nanoparticles after i.v. administration in reticulosarcoma M 5076 metastasis-bearing mice. Cancer Chemother Pharmacol 26, 122–126 (1990). https://doi.org/10.1007/BF02897257

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02897257

Keywords

Navigation