Skip to main content
Log in

Abstract

Inverse Jacobi multipliers are a natural generalization of inverse integrating factors ton-dimensional dynamical systems. In this paper, the corresponding theory is developed from its beginning in the formal methods of integration of ordinary differential equations and the “last multiplier” of K. G. Jacobi. We explore to what extent the nice properties of the vanishing set of inverse integrating factors are preserved in then -dimensional case. In particular, vanishing on limit cycles (in restricted sense) of an inverse Jacobi multiplier is proved by resorting to integral invariants. Extensions of known constructions of inverse integrating factors by means of power series, local Lie Groups and algebraic solutions are provided for inverse Jacobi multipliers as well as a suitable generalization of the concept to systems with discontinuous right-hand side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andronov A. A., Vitt A. A., Khaikin S. E.,Theory of Oscillations, Dover, New York, 1966.

    Google Scholar 

  2. Anosov D. V., Arnold V. I. (Eds.),Dynamical Systems, Springer, Berlin, 1988.

    MATH  Google Scholar 

  3. Barrow-Green J.,Poincaré and the Three Body Problem, A.M.S-L.M.S, “History of Mathematics” Series, Vol. 11, New York, 1997.

  4. Berrone L. R., Giacomini H.,On the vanishing set of inverse integrating factors, Qualitative Theory of Dynamical Systems,1 (2000), 211–230.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bluman G. W., Kumei S.,Symmetries and Differential Equations, Springer, 1989.

  6. Boole G.,A Treatise on Differential Equations, Fifth edition, Chelsea, New York, 1959, (first edited in 1859).

    Google Scholar 

  7. Boltzmann L.,Ueber die Druckkräfte, welche auf Ringe wirksam sind, die in bewegte Flüssigkeit tauchen, J. reine angew Math.,73 (1871), 111–134.

    Google Scholar 

  8. Cartan E.,Sur l’intégration des systèmes différentiels complètement intégrables, C. R. Acad. Sci. Paris, t. CXXXV, (1902), 1415–1417; 1564–1566.

    Google Scholar 

  9. Cartan E.,Leçons sur les Invariant Intégraux, Hermann, Paris, 1922.

    Google Scholar 

  10. Chavarriga J., Giacomini H., Giné, Llibre J.,On the integrability of two dimensional flows, J. Diff. Equations,157 (1999), 163–182.

    Article  MATH  Google Scholar 

  11. Chow S. N., Li C., Wang D.,Normal Forms and Bifurcations of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.

    Google Scholar 

  12. Christopher C. J., Llibre J.,Algebraic aspects of integrability for polynomial systems, Qualitative Theory of Dynamical Systems,1 (1999), 71–95.

    MathSciNet  Google Scholar 

  13. Christopher C. J., Llibre J.,Integrability via invariant algebraic curves for planar polynomial differential systems, Annals of Diff. Equations,16 (2000), 5–19.

    MATH  MathSciNet  Google Scholar 

  14. Coddington E. A., Levinson N.,Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.

    MATH  Google Scholar 

  15. Cooke R.,Kovalevskaya’s mathematical achievements, in the website: www.emba.uvm.edu/~cooke/svkwork.pdf

  16. Cornfeld I. P., Fomin S. V., Sinai Ya. G.,Ergodic Theory, Springer, Berlin, 1982.

    MATH  Google Scholar 

  17. de la Vallée Poussin Ch. J.,Cours d’Analyse Infinitésimale, Tome II, Gauthier-Villars, Paris, 2nd. Ed., 1912.

    MATH  Google Scholar 

  18. Darboux G.,Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges), Bull. Sci. Math. 2ème série,2 (1878), 60–96; 123–144; 151–200.

    Google Scholar 

  19. de Donder T.,Étude sur les invariants intégraux, Rend. Circ. Mat. Palermo,15 (1901), 66–131.

    MATH  Google Scholar 

  20. Filippov A. F.,Differential Equations with Nonsmooth Right-hand Sides, Kluwer, Dordrecht, 1988.

    Google Scholar 

  21. Giacomini H., Viano M.,Determination of limit cycles for two-dimensional dynamical systems, Phys. Rev. E,52 (1995), 222–228.

    Article  MathSciNet  Google Scholar 

  22. Giacomini H., Llibre J., Viano M.,On the nonexistence, existence and uniqueness of limit cycles, Nonlinearity,9 (1996), 501–506.

    Article  MATH  MathSciNet  Google Scholar 

  23. Giacomini H., Llibre J., Viano M.,On the shape of limit cycles that bifurcate from Hamiltonian centers, Nonlinear Anal.,41 (2000), 523–537.

    Article  MathSciNet  Google Scholar 

  24. Giacomini H., Llibre J., Viano M.,The shape of limit cycles that bifurcate from non-Hamiltonian centers, Nonlinear Anal.,43 (2001), 837–859.

    Article  MATH  MathSciNet  Google Scholar 

  25. Goursat E.,Leçons sur le Problème de Pfaff, Hermann, Paris, 1922.

    MATH  Google Scholar 

  26. Goursat E.,Cours d’Analyse Mathématique, Tome II, Gauthier-Villars, Paris, Fifth edition, 1933.

    Google Scholar 

  27. Hadamard J.,Cours d’Analyse, Tome II, Hermann, Paris, 1930.

    Google Scholar 

  28. Halmos P. R.,Measure Theory, D. Van Nostrand, Princeton, 1950.

    MATH  Google Scholar 

  29. Hartman P.,Ordinary Differential Equations, J. Wiley & Sons, New York, 1964.

    MATH  Google Scholar 

  30. Jacobi C. G. J.,Theoria novi multiplicatoris systemati œqautionum differentialium vulgarium applicandi, J. reine angew Math.,27 (1844), 199–268 and29 (1845), 213–279, 333–376; (Gesamelte Werke,IV 317–509).

    MATH  Google Scholar 

  31. Jacobi C. G. J.,Vorlesungen Über Dynamik, G. Reimer, Berlin, 1866.

    Google Scholar 

  32. Jordan C.,Cours D’Analyse, T. 3, Gauthier-Villars, Paris, Troisième édition, 1915.

    Google Scholar 

  33. Jouanolou J. P.,Equations de Pfaff Algébriques, Lectures Notes in Mathematics 708, Springer, 1979.

  34. Klein F.,Lectures on Mathematics, AMS-Chelsea, Providence, 2000. (Reprint of the MacMillan edition of 1894).

  35. Koenigs G., Application des invariants intégraux à la reduction au type canonique d’un système quelconque d’équations différentielles, Comp. Rend. de l’Acad. Paris,121 (1895), 875–878.

    Google Scholar 

  36. Kunze M.,Non-Smooth Dynamical Systems, Lecture Notes in Mathematics 1744, Springer, Berlin, 2000.

    MATH  Google Scholar 

  37. Liouville J.,Note sur la théorie de la variation des constantes arbitraires, J. de Mathématiques Pures et Appl.,3 (1838), 342–349.

    Google Scholar 

  38. Lützen J., Thegeometrization of analytical mechanics. A Pioneering contribution by Joseph Liouville, in D. E. Rowe, J. McCleary (Eds.),The History of Modern Mathematics, (Proc. of the Symposium in the History of Modern Mathematics, Vassar College, Poughkeepsie, New York, 1988), Vol. II, Academic Press, Boston, 1989.

    Google Scholar 

  39. Mané R.,Teoria Ergodica, IMPA, Rio de Janeiro, 1983.

    MATH  Google Scholar 

  40. Olver P. J.,Applications of Lie Groups to Differential Equations, Springer, New York, 1986.

    MATH  Google Scholar 

  41. Palais R. S.,The symmetries of solitons, Bull. Amer. Math. Soc.,34 No. 4, (1997), 339–403.

    Article  MATH  MathSciNet  Google Scholar 

  42. Perko L.,Differential Equations and Dynamical Systems, Springer, New York, 2nd. Ed., (1996).

    MATH  Google Scholar 

  43. Petersen K.,Ergodic Theory, Cambridge University Press, Cambridge, 1983.

    MATH  Google Scholar 

  44. Poincaré H.,Sur les courbes définies par les équations différentielles, J. de Mathématiques (1),7 (1881), 375–422; J. de Mathématiques (2),8 (1882), 251–296; (Oeuvres,I 3–84); J. de Mathématiques Pures Appl. (3),1 (1885), 167–244; (Oeuvres,I 95–114).

    Google Scholar 

  45. Poincaré H.,Sur les courbes définies par les équations différentielles, J. de Mathématiques Pures Appl. (4),2 (1886), 151–217; (Oeuvres,I 167–222).

    Google Scholar 

  46. Poincaré H.,Sur le problème des trois corps et les équations de la dynamique, Acta Math.,13 (1890), 1–270; (Oeuvres,VII 262–479).

    Google Scholar 

  47. Poincaré H.,Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré,I–II Rend. Circ. Mat. Palermo,5 (1891), 161–191;11 (1897), 193–239; (Oeuvres,III 35–58, 59–94).

    Google Scholar 

  48. Poincaré H.,Les Méthodes Nouvelles de la Mécanique Céleste,III Gauthier-Villars, Paris, 1899.

    Google Scholar 

  49. Spivak M.,A Comprehensive Introduction to Differential Geometry, Publish or Perish, Houston, 1979.

    Google Scholar 

  50. Vessiot E.,Méthodes d’intégration élémentaires. Étude des équations différentielles ordinaires au point de vue formel, in “Encyclopédie des Sciences Mathématiques Pures et Appliquées”, Vol. 1 Tome II, 58–170, Gauthier-Villars, Paris, 1909.

    Google Scholar 

  51. Viano M., Llibre J., Giacomini H.,Arbitrary order bifurcations for perturbed Hamiltonian planar systems via the reciprocal of an integrating factor, Nonlinear Anal.,48 (2002), 117–136.

    Article  MATH  MathSciNet  Google Scholar 

  52. Yan-Qian Ye (et al.),Theory of Limit Cycles, Translations of Math. Monographs, Vol. 66, AMS, Rhode Island, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berrone, L.R., Giacomini, H. Inverse Jacobi multipliers. Rend. Circ. Mat. Palermo 52, 77–130 (2003). https://doi.org/10.1007/BF02871926

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02871926

Keywords

Navigation