Skip to main content
Log in

Canopy seed storage in woody plants

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The retention of seeds in the plant canopy for one to 30 years or more is termed serotiny. It is well represented floristically and physiognomically in fire-prone, nutrient-poor and seasonally-dry sclerophyll vegetation in Australia, and to a lesser extent, South Africa followed by North America. While the seed-storing structures vary greatly, all will release their propagules following exposure to the heat of a fire (pyriscence). This phenomenon can be contrasted with seed release at maturity (non-storage) and soil storage of seeds. Although the evolutionary requirements for serotiny are clear, its adaptive advantages over other seed storage syndromes are largely the subject of conjecture in the absence of comparative experiments. Nine hypotheses were assessed here. Canopy storage maximises the quantity of seeds available for the next post-fire generation (unlike non-storage). Synchronized post-fire release satiates post-dispersal granivores (unlike non-storage and soil storage) and ensures arrival on a seed bed conducive to seedling recruitment (unlike non-storage). Canopy stored seeds are better insulated from the heat of a fire than non-stored, and probably soil-stored, seeds. Fluctuating annual seed crops, the opportunity for post-fire wind-dispersal, the possible advantages of dense stands of adults, short lifespan of the dispersed seeds and their optimal location in the soil for germination have only a limited role in explaining the advantages of serotiny. It is concluded that canopy seed storage is favoured in regions where seed production is restricted and inter-fire establishment and maturation are unlikely. In addition, these regions have a reliable seasonal rainfall and are subjected to intense fires at intervals occurring within the reproductive lifespan of the species.

Abstrakt

Das Speichern von Samen für ein bis zu 30 Jahren im Blattwerk der Pflanzen bezeichnet man als ‘Serotiny.’ Es ist in zu Bränden neigenden, nährstoffarmen und periodisch trockenen Hartlaub-Vegetationen in Australien und in geringerem Ausmaß in Nordamerika und Südafrika häufig vertreten. Obwohl die Samenspeiche-rungsstrukturen stark variieren, werden alle ihre Brutkörper frei, nachdem sie der Hitze von Feuer ausgesetzt waren (pyrhiscene). Dieses Phänomen steht im Gegensatz zur Samenfreigabe bei Reife (Nicht-Lagerung) und Bodenlagerung. Obwohl die Entwicklungsvoraussetzungen für ‘Serotiny’ bekannt sind, ist die Überlegenheit gegenüber anderen Samenspeicherungserscheinungsbildern aufgrund der Anpassungsfä-higkeit, größtenteils Gegenstand von Vermutungen, da es vergleichende Experimente nicht gibt. Neun Hypothesen wurden hier bewertet. Blattwerkspeicherung maximiert die Menge des zur Verfügung stehenden Samens für die nächste Generation nach einem Feuer (im Gegensatz zur Nicht-Lagerung). Gleichzeitige Abgabe nach einem Feuer übersättigt die Körnerfresser (im Gegensatz zur Nicht-Lagerung und Bodenlagerung) und sichert so ein Auftreften auf dem Saatbeet, dieses ist für die Sämlingverstärkung von Nutzen. Samen welche im Blattwerk gelagert sind, sind besser gegen die Hitze des Feuers geschützt als nichtgespeicherte Samen und wahrscheinlich auch als bodengelagerte Samen. Schwankende jährliche Samenausbeute, die größere Möglichkeit für Ausbreitung durch den Wind, die möglichen Vorteile durch dichteres Zusammenstehen von älteren Pflanzen, kurze Lebensspanne von verstreuten Samen und die für die Keimung optimale Lage im Boden spielen nur eine begrenzte Rolle in der Erklärung der Vorteile der ‘Serotiny’. Es wird daher geschlossen, daß Blattwerksamenspeicherung in Regionen unwahrscheinlicher Zwischenfeuer-Etablierung und Reifung bevorzugt wird. Weiterhin haben diese Regionen einen verläßlichen saisonalen Regenfall und sind Gegenstand ausgedehnter Brände, die in Intervallen innerhalb der Fortpflanzungslebensspanne der Spezies auftreten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abbott, I. 1985. Reproductive ecology ofBanksia grandis (Proteaceae). New Phytol.99: 129–148.

    Article  Google Scholar 

  • Ahlgren, C. E. 1974. Effects of fire on temperate forests: North Central United States. Pages 195–223in T. T. Kozlowski & C. E. Ahlgren (eds.), Fire and ecosystems. Academic Press, New York.

    Google Scholar 

  • Ashton, D. H. 1981. Fire in tall open-forests (wet sclerophyll forests). Pages 330–366in A. M. Gill, R. H. Groves & I. R. Noble (eds.), Fire and the Australian biota. Aust. Academy of Science, Canberra.

    Google Scholar 

  • -.& E. J. Willis. 1982. The antagonism in the regeneration ofEucalyptus regnans in the mature forest. Pages 113–128in E. I. Newman (ed.), The plant community as a working mechanism. Special Publ. Brit. Ecol. Soc. No. 1.

  • Auld, T. D. 1986. Population dynamics of the shrubAcacia suaveolens (Sm.) Willd.: Fire and the transition to seedlings. Austral. J. Ecol.11: 373–385.

    Article  Google Scholar 

  • Baker, H. A. &E. G. Oliver. 1967. Ericas in Southern Africa. Purnell, Cape Town.

    Google Scholar 

  • Baker, H. G. 1972. Seed weight in relation to environmental conditions in California. Ecology53: 997–1010.

    Article  Google Scholar 

  • Barden, L. S. 1979. Serotiny and seed viabilityof Pinus pungens in the Southern Appalachians. Castanea44: 44–47.

    Google Scholar 

  • Barrow, N. J. 1977. Phosphorus uptake and utilization by tree seedlings. Aust. J. Bot.25: 571–584.

    Article  CAS  Google Scholar 

  • Beadle, N. C. 1966. Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly. Ecology32: 611–654.

    Google Scholar 

  • — 1968. Some aspects of the ecology and physiology of Australian xeromorphic plants. Austral. J. Sci.30: 348–355.

    Google Scholar 

  • Beard, J. S. 1958. The protea species of the summer rainfall area of South Africa. Bothalia7: 41–63.

    Google Scholar 

  • Beaufait, W. R. 1960. Some effects of high temperatures on the cones and seeds of jack pine. For. Sci.6: 194–199.

    Google Scholar 

  • Black, R. A. &L. C. Bliss. 1978. Recovery sequenceof Picea mariana-Vaccinium uliginosum forests after burning near Inuvik, Northwest Territories, Canada. Canad. J. Bot.56: 2020–2030.

    Google Scholar 

  • Boe, K. N. 1974.Sequoiadendron giganteum (Lindl.) Buchholz. Pages 767–768in C. S. Schopfmeyer (tech. coord.). Seeds of woody plants of the United States. U.S.D.A. Forest Serv., Agric. Handbook No. 450.

  • Boland, D. J., M. I. Brooker &J. W. Turnbull. 1980.Eucalyptus seeds. Division of Forest Research, CSIRO, Canberra, Australia.

    Google Scholar 

  • Bond, W. J. 1984. Fire survival of Cape Proteaceae—Influence of fire season and seed predators. Vegetatio56: 65–74.

    Google Scholar 

  • — 1985. Canopy-stored seed reserves (serotiny) in Cape Proteaceae. S. African J. Bot.51: 181–186.

    Google Scholar 

  • — 1988. Proteas as “tumbleseeds”: Wind dispersal through air and over soil. S. African J. Bot.54: 455–460.

    Google Scholar 

  • -. In press. The hare and the tortoise: Angiosperm dominance and gymnosperm persistence J. Linn. Soc. Bot.

  • J. Vlok &M. Viviers. 1984. Variation in seedling recruitment of Cape Proteaceae after fire. J. Ecol.72: 209–221.

    Article  Google Scholar 

  • Borchert, M. 1985. Serotiny and cone-habit in populations ofPinus coulteri (Pinaceae) in the southern coast ranges of California. Madrono32: 29–48.

    Google Scholar 

  • Bradstock, R. A. 1985. Plant population dynamics under varying fire regimes. Ph.D. Thesis, University of Sydney.

  • — &P. J. Myerscough. 1981. Fire effects of seed release and the emergence and establishment of seedlings inBanksia ericifolia. Austral. J. Bot.29: 521–531.

    Article  Google Scholar 

  • —. 1988. The survival and population response to frequent fires of two woody resproutersBanksia serrata andIsopogon anemonifolius. Austral. J. Bot.36: 415–431.

    Article  Google Scholar 

  • Brits, G. J. 1987. Germination depth versus temperature requirements in naturally dispersed seeds ofLeucospermum cordifolium andL. cuneiforme (Proteaceae). S. African J. Bot.53: 119–124.

    Google Scholar 

  • Campbell, B. M. &M. J. Werger. 1988. Plant form in the mountains of the Cape, South Africa. J. Ecol.76: 635–653.

    Google Scholar 

  • Cayford, J. H. &D. J. McRae. 1983. The ecological role of fire in jack pine forests. Pages 182–199in R. W. Wien & D. A. MacLean (eds.), The role of fire in circumpolar ecosystems. John Wiley & Son, Chichester, England.

    Google Scholar 

  • Christensen, P. E. &P. C. Kimber. 1975. Effect of prescribed burning on the flora and fauna of south-west Australian forests. Proc. Ecol. Soc. Austral.1: 85–106.

    Google Scholar 

  • Coetzee, J. M. &J. H. Giliomee. 1987. Seed predation and survival in the infructescences ofProtea repens (Proteaceae). S. African J. Bot.53: 61–64.

    Google Scholar 

  • Cogbill, C. V. 1985. Dynamics of the boreal forests of the Laurentian Highlands, Canada. Canad. J. For. Res.15: 262–271.

    Article  Google Scholar 

  • Cowling, R. M. &B. M. Campbell. 1980. Convergence in vegetation structure in the mediterranean communities of California, Chile and South Africa. Vegetatio43: 191–198.

    Article  Google Scholar 

  • — &B. B. Lamont. 1985a. Serotiny in threeBanksia species along a climatic gradient. Austral. J. Ecol.10: 345–350.

    Article  Google Scholar 

  • ——. 1985b. Seed release inBanksia: The role of wet-dry cycles. Austral. J. Ecol.10: 169–171.

    Article  Google Scholar 

  • ——. 1987. Post-fire recruitment of four co-occurringBanksia species. J. Appl. Ecol.24: 645–658.

    Article  Google Scholar 

  • —— &S. M. Pierce. 1987. Seed bank dynamics of four co-occurringBanksiaspecies. J. Ecol.75: 289–302.

    Article  Google Scholar 

  • — &T. Gxaba. 1990. Effects of a fynbos on understorey community: Implications for the maintenance of community-wide species richness. S. African J. Ecol.1: 1–7.

    Google Scholar 

  • Cremer, K. W. 1966. Dissemination of seed fromEucalyptus regnans. Austral. For.30: 33–37.

    Google Scholar 

  • Critchfield, W. B. 1985. The later quaternary history of lodgepole and jack pines. Canad. J. For. Res.15: 749–772.

    Article  Google Scholar 

  • Crossley, D. I. 1956. Fruiting habits of lodgepole pine. Can. Dept. Northern Affairs and Nat. Res., For. Res. Div. Tech. Note 35.

  • Dallimore, W. &A. B. Jackson. 1966. A handbook of the Coniferae and Ginkgoaceae, 4th ed., revised by S. G. Harrison. St. Martin’s Press, New York.

    Google Scholar 

  • Davidson, D. W. &S. R. Morton. 1984. Dispersal adaptations of someAcacia species in the Australian arid zone. Ecology65: 1038–1051.

    Article  Google Scholar 

  • Elliott, P. F. 1974. Evolutionary responses of plants to seed-eaters: Pine squirrel predation on Lodgepole pine. Evolution28: 221–231.

    Article  Google Scholar 

  • Engelmann, G. 1880. Revision of the genusPinus, and description ofPinus elliottii. Trans. Acad. Sci. St. Louis4: 161–190.

    Google Scholar 

  • Enright, N. J. &B. B. Lamont. 1989a. Fire temperatures and follicle opening requirements in tenBanksia species. Austral. J. Ecol.14: 107–113.

    Google Scholar 

  • —. 1989b. Seed banks, fire season, safe sites and seedling recruitment in five co-occurringBanksia species. J. Ecol.77: 1111–1122.

    Article  Google Scholar 

  • —. 1990. Effects of density on the reproductive output ofProtea lepidocarpodendron. S. African J. Bot.56: 29–33.

    Google Scholar 

  • —.E. T. Witkowski &P. J. Mustart. 1989. Reproductive traits and accumulation of nitrogen and phosphorus during the development of fruits ofProtea compacta R. Br. (calcifuge) andProtea obtusifolia Buek. ex meisn. (calcicole). New Phytol.112: 109–115.

    Article  Google Scholar 

  • Farrell, T. P. &D. H. Ashton. 1978. Population studies onAcacia melanoxylon R.Br. I: Variation in seed and vegetative characteristics. Austral. J. Bot.26: 365–379.

    Article  Google Scholar 

  • Forcella, F. 1980. Cone predation by pinyon cone beetle (Conophthorus edulis; Scolytidae): Dependence on frequency and magnitude of cone production. Amer. Nat.116: 594–598.

    Article  Google Scholar 

  • Fowells, H. A. 1965. Silvics of forest trees of the United States. U.S.D.A. Forest Serv., Agric. Handbook No. 271.

  • Fox, B. J., R. D. Quinn &G. J. Breytenbach. 1985. A comparison of small mammal succession following fire in shrublands of Australia, California and South Africa. Proc. Ecol. Soc. Austral.14: 179–197.

    Google Scholar 

  • George, A. S. 1981. The genusBanksia L.f. Nuytsia3: 239–473.

    Google Scholar 

  • Gill, A. M. 1976. Fire and the opening ofBanksia ornata F. Muell. follicles. Austral. J. Bot.24: 329–335.

    Article  Google Scholar 

  • — 1981a. Adaptive responses of Australian vascular plant species to fires. Pages 243–272in A. M. Gill, R. H. Groves & I. R. Noble (eds.), Fire and the Australian biota. Australian Academy of Science, Canberra.

    Google Scholar 

  • — 1981b. Coping with fire. Pages 65–87in J. S. Pate & A. J. McComb (eds.), The biology of Australian plants. University of Western Australia Press, Perth.

    Google Scholar 

  • -. 1981c. Fire adaptive traits of vascular plants. Pages 208–230in J. M. Bonnicksen, N. I. Christense, J. E. Lotan & W. A. Reiners (eds.), Fire regimes and ecosystem properties. U.S.D.A. Forest Serv., Gen. Tech. Rep. WO 26.

  • — &S. Neser. 1984.Acacia cyclops andHakea sericea at home and abroad. Pages 57–58in Proc. 4th Internat. Conf. on Mediterranean Ecosystems. University of Western Australia, Nedlands.

    Google Scholar 

  • Givnish, T. J. 1981. Serotiny, geography and fire in the pine barrens of New Jersey. Evolution35: 101–123.

    Article  Google Scholar 

  • Griffin, J. R. & W. B. Critchfield. 1972. The distribution of forest trees in California. U.S.D.A. Forest Serv., Res. Paper PSW-82.

  • Grundon, N. J. 1972. Mineral nutrition of some Queensland heath plants. J. Ecol.60: 171–180.

    Article  CAS  Google Scholar 

  • Hardy, A. D. 1926. Delayed dehiscence in Myrtaceae, Proteaceae and Coniferae. Proc. Roy. Soc. Victoria38: 57–58 + plate.

    Google Scholar 

  • Harper, J. L. 1977. Population biology of plants. Academic Press, London.

    Google Scholar 

  • Heinselman, M. L. 1981. Fire intensity and frequency as factors in the distribution and structure of northern ecosystems. Pages 7–57in J. M. Bonnicksen, N. I. Christensen, J. E. Lotan & W. A. Reiners (eds.), Fire regimes and ecosystem properties. U.S.D.A. Forest Serv., Gen. Tech. Rep. WO 26.

  • Hocking, P. J. 1982. The nutrition of fruits of two proteaceaous shrubs,Grevillea willsonii andHakea undulata, from south-western Australia. Austral. J. Bot.30: 219–230.

    Article  CAS  Google Scholar 

  • Hoffman, M. T. &R. M. Cowling. 1987. Plant physiognomy, phenology and demography. Pages 1–34in R. M. Cowling & P. W. Roux, (eds.), The Karoo Biome: A preliminary synthesis. Part 2—Vegetation and history. S. African Nat. Sci. Programmes Report No. 142, CSIR, Pretoria.

    Google Scholar 

  • Ihlenfeldt, H. D. 1971. Some aspects of the biology of dissemination of the Mesembryanthemaceae. Pages 22–34in H. Herre (ed.), The genera of the Mesembryanthemaceae. Tafelberg, Cape Town.

    Google Scholar 

  • Jackson, B. D. 1916. A glossary of botanic terms with their derivation and accent, 3rd ed. Duckworth, London.

    Google Scholar 

  • Janzen, D. H. 1971. Seed predation by animals. Annu. Rev. Ecol. Syst.2: 465–492.

    Article  Google Scholar 

  • — 1974. Tropical blackwater rivers, animals and mast fruiting by the Dipterocarpaceae. Biotropica4: 69–103.

    Article  Google Scholar 

  • Keeley, J. E. 1987. Role of fire in seed germination of woody taxa in California chaparral. Ecology68: 434–443.

    Article  Google Scholar 

  • Kilgore, B. H. 1981. Fire in ecosystem distribution and structure: Western forests and scrublands. Pages 58–89in J. M. Bonnicksen, N. I. Christensen, J. E. Lotan & W. A. Reiners (eds.), Fire regimes and ecosystem properties. U.S.D.A. Forest Serv., Gen. Tech. Rep. WO-26.

  • Koller, D. 1973. Environmental control of seed germination. Pages 2–101in T. T. Kozlowski (ed.). Seed biology, Vol. II. Academic Press, New York.

    Google Scholar 

  • Krugman, S. L. & J. L. Jenkinson. 1974.Pinus L. Pages 598–638in C. S. Schopfmeyer (tech. coord.), Seeds of woody plants in the United States. U.S.D.A. Forest Serv., Agric. Handbook No. 450.

  • Kuo, J., P. J. Hocking &J. S. Pate. 1982. Nutrient reserves in seeds of selected proteaceous species from south-western Australia. Austral. J. Bot.30: 231–249.

    Article  CAS  Google Scholar 

  • Ladd, P. G. 1989. The status of Casuarinaceae in Australian forests. Pages 63–85in K. J. Frawley & N. M. Semple (eds.), Australia’s ever changing forests. Spec. Publ. No. 1, Dept. Geog. and Oceanogr., Australian Defence Forces Ac., Canberra.

    Google Scholar 

  • Lamont, B. B. 1982. Mechanisms for enhancing nutrient uptake in plants, with special reference to mediterranean South Africa and Western Australia. Bot. Rev.48: 597–689.

    CAS  Google Scholar 

  • — 1985. Dispersal of the winged fruits ofNuytsia floribunda (Loranthaceae). Austral. J. Ecol.10: 187–193.

    Article  Google Scholar 

  • —. 1988. Sexual versus vegetative reproduction inBanksia elegans. Bot. Gaz.149: 370–375.

    Article  Google Scholar 

  • — &M. J. Barker. 1988. Seed bank dynamics of a serotinous, non-sproutingBanksia species. Austral. J. Bot.36: 193–203.

    Article  Google Scholar 

  • — &G. J. Barrett. 1988. Constraints on seed production and storage in a root-suckeringBanksia. J. Ecol.76: 1069–1082.

    Article  Google Scholar 

  • —,B. J. Collins &R. M. Cowling. 1985. Reproductive biology of the Proteaceae in Australia and South Africa. Proc. Austral. Ecol. Soc.14: 213–224.

    Google Scholar 

  • —,S. W. Connell &S. M. Bergl. 1991. Population and seed bank dynamics ofBanksia cuneata: the role of time, fire and moisture. Bot. Gaz.152: 114–122.

    Article  Google Scholar 

  • — &R. M. Cowling. 1984. Flammable infructescences inBanksia: A fruit-opening mechanism. Austral. J. Ecol.9: 295–296.

    Article  Google Scholar 

  • —,S. Downes &J. E. Fox. 1977. Importance-value curves and diversity indices applied to a species-rich heathland in Western Australia. Nature265: 438–441.

    Article  Google Scholar 

  • —,N. J. Enright &S. M. Bergl. 1989. Coexistence and competitive exclusion ofBanksia hookeriana along a topographic gradient. Oikos56: 39–42.

    Article  Google Scholar 

  • —,A. J. Hopkins &R. Hnatiuk. 1984. The flora-composition, diversity and origins. Pages 27–50in J. S. Pate & J. S. Beard, (eds.), Kwongan-plant life of the sandplain. University of Western Australia Press, Nedlands.

    Google Scholar 

  • — &S. J. van Leeuwen. 1988. Seed production and mortality in a rareBanksia species. J.Appl. Ecol.25: 551–559.

    Article  Google Scholar 

  • Lanner, R. M. 1982. Adaptations of whitebark pine for seed dispersal by Clark’s nutcracker. Canad. J. For. Res.12: 391–402.

    Article  Google Scholar 

  • Ledig, F. T. &S. Little. 1979. Pitch pine (P. rigida Mill.): Ecology, physiology, and genetics. Pages 347–371in R. T. Forman (ed.), Pine barrens: Ecosystem and landscape. Academic Press, New York.

    Google Scholar 

  • Le Maitre, D. C. 1984. Current interpretations of the term serotiny. S. African J. Sci.81: 284–290.

    Google Scholar 

  • — 1987. Dynamics of canopy-stored seed in relation to fire. Pages 24–45in R. M. Cowling, D. C. Le Maitre, B. McKenzie, R. P. Prys-Jones & B. W. Van Wilgen (eds.), Disturbance and the dynamics of fynbos biome communities. S. African Nat. Sci. Programmes Report No. 135, C.S.I.R., Pretoria, South Africa.

    Google Scholar 

  • — 1988. The effects of parent density and season of burn on the regeneration ofLeucadendron lanreolum (Proteaceae) in the Kogelberg. S. African J. Bot.54: 581–584.

    Google Scholar 

  • — 1990. The influence of seed ageing on the plant on seed germination inProtea neriifolia (Proteaceae). S. African J. Bot.56: 49–53.

    Google Scholar 

  • Lindsay, A. M. 1985. Are Australian soils different? Proc. Ecol. Soc. Austral.14: 83–97.

    Google Scholar 

  • Linhart, Y. B. 1978. Maintenance of variation in cone morphology in California closed-cone pines: The roles of fire, squirrels and seed output. Southwest Nat.23: 29–40.

    Article  Google Scholar 

  • Loneragan, O. W. &J. F. Loneragan. 1964. Ashbed and nutrients in the growth of seedlings of Karri (Eucalyptus diversicolor FM). J. Roy. Soc. West. Austral.47: 75–80.

    Google Scholar 

  • Lotan, J. E. 1968. Cone serotiny of lodgepole pine near Island Park, Idaho. U.S.D.A. Forest Serv., Res. Pap. INT-52.

  • Low, A. B. &B. B. Lamont. 1990. Aerial and below-ground phytomass ofBanksia scrubheath at Eneabba, south-western Australia. Austral. J. Bot.38: 351–359.

    Article  Google Scholar 

  • Majer, J. D. &B. B. Lamont. 1985. Removal of seed ofGrevillea pteridifolia (Proteaceae) by ants. Austral. J. Bot.33: 611–618.

    Article  Google Scholar 

  • Mattson, W. J. 1971. Relationship between cone crop size and cone damage by insects in red pine seed-production areas. Canad. Entomol.103: 617–621.

    Article  Google Scholar 

  • McMaster, G. S. &P. H. Zedler. 1981. Delayed seed dispersal inPinus torreyana (Torrey Pine). Oecologia51: 62–66.

    Article  Google Scholar 

  • Michaux, A. 1803.Pinus serotina. Page 205in Flora Boreali-Americana, Vol. 2. Strasbourg, Paris.

  • Midgley, J. J. 1987. Aspects of the evolutionary ecology of the Proteaceae, with emphasis on the genusLeucadendron and its phylogeny. Ph.D. Thesis. University of Cape Town.

  • — 1989. Season of burn of serotinous Proteaceae: A critical review and further data. S. African J. Bot.55: 165–170.

    Google Scholar 

  • —,R. M. Cowling &B. B. Lamont. 1991. Relationship of follicle size and seed size in Hakea (Proteaceae); isometry, allometry and adaptation. S. African J. Bot.57: 107–110.

    Google Scholar 

  • —,T. Hoekstra &R. Bartholomew. 1989. The effects of date of planting on field establishment of serotinous Cape Proteaceae. Vegetatio79: 185–192.

    Article  Google Scholar 

  • Mills, E. A. 1915. The Rocky Mountain wonderland. Houghton Mifflin, Boston.

    Google Scholar 

  • Minnich, R. A. 1977. The geography of fire and big-cone Douglas-fir, Coulter pine and western conifer forests in the east transverse ranges, southern California. Pages 443–450in H. A. Mooney & C. E. Conrad (tech. coords.), Proceedings of the symposium on the environmental consequences of fire and fuel management in mediterranean ecosystems. U.S.D.A. Forest Serv., Gen. Tech. Rep. WO-3.

  • Mitchell, D. T. &P. G. Coley. 1987. Litter production and decompositionof Protea repens growing in sandplain lowland and mountain fynbos, south-western Cape. S. African J. Bot.53: 25–37.

    Google Scholar 

  • Monk, C. D. 1966. An ecological significance of evergreeness. Ecology47: 504–505.

    Article  Google Scholar 

  • Mooney, H. A. 1983. Carbon-gaining capacity and allocation patterns of mediterraneanclimate plants. Pages 103–119in F. J. Kruger, D. T. Mitchell & J. U. Jarvis (eds.), Mediterranean-type ecosystems. The role of nutrients. Springer-Verlag, Berlin.

    Google Scholar 

  • Mott, J. J. &R. H. Groves. 1981. Germination strategies. Pages 307–341in J. S. Pate & A. J. McComb (eds.), Biology of Australian plants. University of Western Australia Press, Nedlands.

    Google Scholar 

  • Mowat, E. L. 1960. No serotinous cones on central Oregon lodgepole pine. J. For.58: 118–119.

    Google Scholar 

  • Muir, P. S. &J. E. Lotan. 1985. Serotiny and life-historyof P. contorta var.latifolia. Canad. J. Bot.63: 938–945.

    Google Scholar 

  • Myburgh, A. C., L. C. Starke, &D. J. Rust. 1974. Destructive insects in the seed heads ofProtea barbigera Meissner (Proteaceae). J. Entomol. Soc. S. Africa37: 23–29.

    Google Scholar 

  • Naveh, Z. &R. H. Whittaker. 1979. Structural and floristic diversity of shrublands and woodlands in northern Israel and other mediterranean areas. Vegetatio41: 171–190.

    Article  Google Scholar 

  • O’Dowd, D. J. &A. M. Gill. 1984. Predator satiation and site alteration following fire: mass reproduction of alpine ash (Eucalyptus delegatensis) in south-eastern Australia. Ecology65: 1052–1066.

    Article  Google Scholar 

  • Ozanne, P. G. &R. L. Specht. 1981. Mineral nutrition of heathlands: phosphorus toxicity. Pages 209–213in R. L. Specht (ed.), Heathlands and related shrublands of the World: Analytical studies. Ecosystems of the World, Vol. 9B. Elsevier, Amsterdam.

    Google Scholar 

  • Pate, J. S. &J. S. Beard. 1984. Kwongan—Plant life of the sandplain. University of Western Australia Press, Nedlands.

    Google Scholar 

  • Perry, D. A. &J. E. Lotan. 1979. A model of fire selection for serotiny in lodgepole pine. Evolution33: 958–968.

    Article  Google Scholar 

  • Pittock, A. B. 1988. Actual and anticipated changes in Australia’s climate. Pages 35–51in G. I. Pearman (ed.), Greenhouse: Planning for climatic change. CSIRO, Melbourne.

    Google Scholar 

  • Platt, W. J., G. W. Evans &S. L. Rathbun. 1988. The population dynamics of a long-lived conifer (Pinus palustris). Amer. Nat.131: 491–525.

    Article  Google Scholar 

  • Rice, B. &M. Westoby. 1981. Myrmecochory in sclerophyll vegetation of the West Head, New South Wales. Austral. J. Ecol.6: 291–296.

    Article  Google Scholar 

  • Rourke, J. P. 1980. The proteas of southern Africa. Purnell, Cape Town.

    Google Scholar 

  • — 1987. The inflorescence morphology and systematics ofAulax (Proteaceae). S. African J. Bot.53: 464–480.

    Google Scholar 

  • Rudolph, T. D., R. E. Schoenike & T. Schantz-Hansen. 1959. Results of one-parent progeny tests relating to the inheritance of open and closed cones in jack pine. University Minn. For. Notes 78.

  • Rundel, P. W. 1988. Leaf structure and nutrition in mediterranean-climate sclerophylls. Pages 157–167in R. L. Specht (ed.), Mediterranean-type ecosystems: A data source book. Kluwer, Dordrecht.

    Google Scholar 

  • Safford, L. O. 1974.Picea A. Dietr. Pages 587–597in C. S. Schopfmeyer (tech. coord.), Seeds of woody plants in the United States. U.S.D.A. Forest Serv., Agric. Handbook No. 450.

  • Salisbury, E. J. 1942. The reproductive capacity of plants. Bell, London.

    Google Scholar 

  • Schoenike, R. E. 1976. Geographic variations in jack pine (Pinus banksiana). University Minn. Agric. Exp. Stn. Tech. Bull. 304.

  • Scott, J. 1982. The impact of destructive insects on reproduction in six species ofBanksia L.f. (Proteaceae) Austral. J. Zool.30: 901–921.

    Article  Google Scholar 

  • Schmidt, J. M., J. C. Mitchell, J. D. Carlin &M. R. Wagner. 1984. Insect damage, cone dimensions and seed production in crown levels of ponderosa pine. Gt. Basin Natur.44: 575–578.

    Google Scholar 

  • Schopfmeyer, C. S. (tech. coord.) 1974. Seeds of woody plants in the United States. U.S.D.A. Forest Serv., Agric. Handbook No. 450.

  • Shaw, G. R. 1914. The genusPinus. Publications of the Arnold Arboretum No. 5. Jamaica Plain, Mass.

    Google Scholar 

  • Shea, S. R., J. McCormick &C. C. Portlock. 1979. The effect of fires on the regeneration of leguminous species in the northern jarrah (Eucalyptus marginata Sm) forest of Western Australia. Austral. J. Ecol.4: 195–205.

    Article  Google Scholar 

  • Siddiqi, M. Y., P. J. Myerscough &R. C. Carolin. 1976. Studies in the ecology of coastal heath of New South Wales IV. Seed survival, germination, seedling establishment and early growth inBanksia serratifolia Salisb.,B. asplenifolia Salisb. andB. ericifolia L.f. in relation to fire: Temperature and nutritional effects. Austral. J. Ecol.1: 175–183.

    Article  Google Scholar 

  • Smith, C. C. 1970. The co-evolution of pine squirrels (Tamiasciurus) and conifers. Ecol. Monogr.40: 349–371.

    Article  Google Scholar 

  • Snyder, T. P., D. A. Stewart &A. F. Stickler. 1985. Temporal analysis of breeding in Jack pine (Pinus banksiana Lamb.). Canad. J. For. Res.15: 1159–1166.

    Article  Google Scholar 

  • Specht, R. L. 1979. Heathlands and related shrublands of the world. Pages 1–18in R. L. Specht (ed.), Heathlands and related shrublands of the world: Descriptive studies. Ecosystems of the world, Vol. 9 A. Elsevier, Amsterdam.

    Google Scholar 

  • — &E. J. Moll. 1983. Mediterranean-type heathlands and sclerophyllous shrublands of the world: An overview. Pages 41–65in F. J. Kruger, D. T. Mitchell & J. U. Jarvis (eds.), Mediterranean-type Ecosystems: The role of nutrients. Springer-Verlag, Berlin.

    Google Scholar 

  • Stearn, W. T. 1973. Botanical Latin. David and Charles, Newton Abbot.

    Google Scholar 

  • Strauss, S. H. &F. T. Ledig. 1985. Seedling architecture and life-history in pines. Am. Nat.125: 702–715.

    Article  Google Scholar 

  • Taylor, H. C. 1978. Capensis. Pages 171–229in M. J. A. Werger (ed.), Biogeography and ecology of Southern Africa. Dr. W. Junk, The Hague.

    Google Scholar 

  • Teich, A. H. 1970. Cone serotiny and inbreeding in natural populations ofPinus banksiana andPinus contorta. Canad. J. Bot.48: 1805–1809.

    Article  Google Scholar 

  • Thomas, P. A. &R. W. Wein. 1985. Delayed emergence of four conifer species on postfire seedbeds in eastern Canada. Canad. J. For. Res.15: 727–729.

    Article  Google Scholar 

  • Van der Pijl, L. 1969. Principles of dispersal in higher plants. Springer-Verlag, Berlin.

    Google Scholar 

  • Van Staden, J. 1978. Seed viability inProtea neriifolia. I. The effects of time of harvesting on seed viability. Agroplantae10: 65–67.

    Google Scholar 

  • Van Wilgen, B. W., K. B. Higgens &D. U. Bellstedt. 1990. The role of vegetation structure and fuel chemistry in excluding fire from forest patches in the fire-prone fynbos shrublands of South Africa. J. Ecol.78: 210–222.

    Article  Google Scholar 

  • — &M. Viviers. 1985. The effect of season of fire on serotinous Proteaceae in the Western Cape and the implications of fynbos management. S. African For. J.123: 49–53.

    Google Scholar 

  • Viereck, L. A. 1983. The effects of fire in black spruce ecosystems of Alaska and northern Canada. Pages 201–220in R. W. Wien & D. A. MacLean (eds.), The role of fire in circumpolar ecosystems. J. Wiley & Sons, Chichester, England.

    Google Scholar 

  • Vogl, R. J. 1973. Ecology of knobcone pine in the Santa Ana Mountains, California. Ecol. Monogr.43: 125–143.

    Article  Google Scholar 

  • Vogl, R. J., W. P. Armstrong, K. L. White &K. L. Cole. 1977. The closed cone pines and cypresses. Pages 295–358in M. Barbour & J. Major (eds.), Terrestrial vegetation of California. Wiley, New York.

    Google Scholar 

  • Waller, D. M. 1979. Models of mast fruiting in trees. J. Theor. Biol.80: 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Wardrop, A. B. 1983. The opening mechanism of follicles of some speciesof Banksia. Austral. J. Bot.31: 485–500.

    Article  Google Scholar 

  • Weiss, P. 1984. Seed characteristics and regeneration of some species in invaded coastal communities. Aust. J. Ecol.9: 99–106.

    Article  Google Scholar 

  • Wellington, A. B. &I. R. Noble. 1985a. Post-fire recruitment and mortality in a population of the malleeEucalyptus incrassata in semi-arid, south-eastern Australia. J. Ecol.73: 645–655.

    Article  Google Scholar 

  • —. 1985b. Seed dynamics and factors limiting recruitment of the malleeEucalyptus incrassata in semi-arid, south-eastern Australia. J. Ecol.73: 657–666.

    Article  Google Scholar 

  • Westman, W. E. &R. H. Whittaker. 1975. The pygmy forest region of northern California: Studies on biomass and productivity. J. Ecol.63: 493–520.

    Article  Google Scholar 

  • Whelan, R. J. &A. R. Main. 1979. Insect grazing and post-fire plant succession in a southwest Australian woodland. Austral. J. Ecol.4: 387–398.

    Article  Google Scholar 

  • Williams, I. J. 1972. A revision of the genusLeucadendron (Proteaceae). Contr. Bolus Herb. No. 3.

  • Wright, A. A. &A. W. Bailey. 1979. Fire ecology of the United States and southern Canada. Wiley and Sons, New York.

    Google Scholar 

  • Zammit, C. A. 1984. Seedling recruitment strategies in obligate seeding and resproutingBanksia shrubs. Pages 171–172in Proc. 4th Internat. Conf. on Mediterranean ecosystems. University of Western Australia, Perth.

    Google Scholar 

  • -. 1986. Regeneration strategies in a fire-prone environment: A comparison of twoBanksia life histories. Ph.D. Thesis. Macquarie University.

  • — &M. Westoby. 1987. Population structure and reproductive status of twoBanksia shrubs at various times after fire. Vegetatio70: 11–20.

    Google Scholar 

  • —. 1988. Pre-dispersal seed losses, and the survival of seeds and seedlings of two serotinousBanksia shrubs in burnt and unburnt heath. J. Ecol.76: 200–214.

    Article  Google Scholar 

  • Zedler, P. H. 1986. Closed-cone conifers of the chaparral. Fremontia14: 14–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamont, B.B., Le Maitre, D.C., Cowling, R.M. et al. Canopy seed storage in woody plants. Bot. Rev 57, 277–317 (1991). https://doi.org/10.1007/BF02858770

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858770

Keywords

Navigation