Skip to main content
Log in

Population ecology of halophyte seeds

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Some aspects of the population biology of halophytes are considered in this review. Persistent seed banks have been reported for a number of inland- and coastal-salt marsh plant communities. Seeds of perennial grasses are often under-represented, while annuals and some perennial forbs may be over-represented in the seed bank. The persistent seed bank of annual halophytes appears adaptive, and provides multiple seed germination opportunities which may prevent local extinction when environmental stress increases. Somatic seed polymorphism provides a mechanism by which parent plants can respond to changing environments by partitioning their resources into reproductive units which have distinct germination responses. Parental effects may influence either seed morphology and/or physiological requirements of seeds when they are exposed to environmental stress. A prolonged germination period can provide plant populations with numerous opportunities to establish seedling cohorts. Early cohorts will have a selective advantage under moderate conditions because mortality will be low and plants will survive until maturity. However, fluctuations in salinity levels and tidal activity can cause high mortality in early cohorts in salt marsh habitats, providing later cohorts with an opportunity for establishment. Resource allocation to reproductive structures is related to plant size, which itself can be affected by both abiotic and biotic factors. Larger plants were found to produce more seeds than smaller plants in a population, but the mean seed weight was greater in small plants.

Résumé

Cette revue examine quelques aspects de la biologie des peuplements des halophytes. On a observé qu’il y a des réserves permanentes de graines pour certaines populations de plantes de marais salants, tant sur le littoral qu’ à l’intérieur des terres. Les réserves de graines tendent à présenter insuffisamment de graines de plantes vivaces et trop d’annuelles et de certaines herbacées vivaces. La reserve permanente des halophytes annuelles semble être adaptive, et offre aux graines de multiples occasions de germination, ce qui peut empêcher l’extinction locale quand le stress de l’environnement augmente. Le polymorphisme somatique de la graine offre un mécanisme par lequel les plantes-parents peuvent réagir à des environnements variables en subdivisant leurs ressources en des unités reproductrices qui ont des réactions de germination distinctes. Les plants précoces auront un avantage sélectif dans des conditions modérées parce que la mortalité sera faible et que les plantes survivront jusqu’à la maturité. Une période de germination prolongée peut fournir aux populations de plantes de nombreuses occasions d’établir des ordres de plants. Cependant les fluctuations des niveaux de la salinité et de l’activité des marées peut produire une forte mortalité parmi les plants précoces dans ces marais salant, ce qui donne aux plants suivant l’occasion de bien s’établir. Combien la plante possède de structures reproductives est lié à sa taille, qui, elle-même peut être affectée et par les facteurs abiotiques et par les facteurs biotiques. On a constaté que les plantes plus grosses produisent plus de graines que les plantes plus petites dans une population, mais que le poids moyen des graines est plus élevé dans les plantes plus petites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Baker, G. A. &D. J. O’Dowd. 1982. Effects of parent plant density on the production of achene types in the annualHypochoeris glabra. J. Ecol.70: 201–215.

    Google Scholar 

  • Baker, H. G. 1974. The evolution of weeds. Annual Rev. Ecol. Syst.5: 1–24.

    Google Scholar 

  • Baskin, J. M. &C. C. Baskin. 1972. Influence of germination date on survival and seed production in a natural population ofLeavenworthia stylosa. Amer. Midl. Naturalist88: 318–323.

    Google Scholar 

  • —. 1976. Germination dimorphism inHeterotheca subaxillaris var.subaxillaris. Bull. Torrey Bot. Club103: 201–206.

    Google Scholar 

  • — 1983. Germination ecology ofVeronica arvensis. J. Ecol.71: 57–68.

    Google Scholar 

  • — 1984. Role of temperature in regulating timing of germination in soil seed reserves ofLamium purpureum L. Weed Res.24: 341–349.

    Google Scholar 

  • — 1985. The annual dormancy cycle in buried weed seeds: A continuum. BioScience35: 492–498.

    Google Scholar 

  • Beadle, N. C. W. 1952. Studies in halophytes. I. The germination of the seed and establishment of the seedlings of five species ofAtriplex in Australia. Ecology33: 49–62.

    Google Scholar 

  • Beeftink, W. G. 1985. Population dynamics of annualSalicornia species in the tidal salt marshes of the Oostershelde, The Netherlands. Vegetatio61: 127–136.

    Google Scholar 

  • Berger, A. 1985. Seed dimorphism and germination behavior inSalicornia patula. Vegetatio61: 137–143.

    Google Scholar 

  • Best, K. F., J. D. Banting &G. G. Bowes. 1978. The biology of Canadian weeds. 31.Hordeum jubatum L. Canad. J. Pl. Sci.58: 699–708.

    Google Scholar 

  • Bewley, J. D. & M. Black. 1982. Physiology and biochemistry of seeds in relation to germination. Springer-Verlag, Berlin. 375 pp.

  • Black, J. N. 1958. Competition between plants of different initial seed sizes in swards of subterranean clover (Trifolium subterraneum) with particular reference to leaf area and the light microclimate. Austral. J. Agric. Res.9: 299–318.

    Google Scholar 

  • Braun-Blaunquet, J. 1932. Plant sociology. McGraw-Hill Book Co., New York. 439 pp.

  • Brown, N. A. C. &J. J. Mitchell. 1983. Germination of the polymorphic fruits ofBidens bipinnata. S. African J. Bot.3: 55–58.

    Google Scholar 

  • Cavers, P. B. 1983. Seed demography. Canad. J. Bot.61: 3578–3590.

    Google Scholar 

  • — &J. L. Harper. 1967. The comparative biology of closely related species living in the same area. IX.Rumex. The nature of adaptation to the seashore habitat. J. Ecol.55: 73–82.

    Google Scholar 

  • — &M. G. Steel. 1984. Patterns of change in seed weight over time on individual plants. Amer. Naturalist124: 324–335.

    Google Scholar 

  • Cheplick, G. P. &J. A. Quinn. 1982.Amphicarpum purshii and the “pessimistic strategy” in amphicarpic annuals with subterranean fruit. Oecologia52: 327–332.

    Google Scholar 

  • Cideciyan, G. P. &A. J. Malloch. 1982. Effects of seed size on the germination, growth and competitive ability ofRumex crispus andRumex obtusifolius. J. Ecol.70: 227–232.

    Google Scholar 

  • Cook, R. E. 1975. The photoinductive control of seed weight inChenopodium rubrum L. Amer. J. Bot.62: 427–431.

    Google Scholar 

  • —. 1976. Photoperiod and the determination of potential seed number inChenopodium rubrum L. Ann. Bot.40: 1085–1099.

    Google Scholar 

  • —. 1979. Pattern of juvenile mortality and recruitment in plants. Pages 207–231in O. T. Solbrig, S. Jain, G. B. Johnson & P. H. Raven (eds.), Topics in plant population biology. Columbia University Press, New York. 589 pp.

    Google Scholar 

  • — 1980. Germination and size dependent mortality inViola blanda. Oecologia47: 115–117.

    Google Scholar 

  • Cresswell, E. G. &J. P. Grime. 1981. Induction of a light requirement during seed development and its ecological consequences. Nature291: 583–585.

    Google Scholar 

  • Datta, S. C., M. Evenari &Y. Gutterman. 1970. The heteroblasty ofAegilops ovata L. Israel J. Bot.19: 463–483.

    Google Scholar 

  • Davy, A. J. &H. Smith 1985. Population differentiation in the life-history characteristics of salt-marsh annuals. Vegetatio61: 117–125.

    Google Scholar 

  • Dodd, J. D. &R. T. Coupland 1966. Vegetation of saline areas in Saskatchewan. Ecology47: 958–968.

    Google Scholar 

  • Drysdale, F. R. 1973. Variation in seed size inAtriplex patula var.hastata (L.) Gray. Rhodora75: 106–110.

    Google Scholar 

  • Fatih, H. A. &F. A. Bazzaz 1979. The biology ofAmbrosia trifida L. II. Germination, emergence, growth and survival. New Phytol.83: 817–827.

    Google Scholar 

  • Flint, S. D. &I. G. Palmblad. 1978. Germination dimorphism and developmental flexibility in the ruderal weedHeterotheca grandiflora. Oecologia36: 33–43.

    Google Scholar 

  • Forsyth, C. &N. A. C. Brown 1982. Germination of the dimorphic fruits ofBidens pilosa L. New Phytol.90: 151–164.

    Google Scholar 

  • Frankton, C. &I. J. Bassett 1968. The genusAtriplex (Chenopodiaceae) in Canada. I. Three introduced species:A. heterosperma, A. oblongifolia, andA. hortensis. Canad. J. Bot.46: 1309–1313.

    Google Scholar 

  • —. 1970. The genusAtriplex (Chenopodiaceae) in Canada. II. Four native western annuals:A. argentea, A. truncata, A. powellii, andA. dioica.. Canad. J. Bot.48: 981–989.

    Google Scholar 

  • Gronzis, M., A. Berger &G. Heim 1976. Polymorphisme et germination des graines chez espèces annuelles du genreSalicornia. Acta Oecol., Oecol. Pl.11: 41–52.

    Google Scholar 

  • Gutterman, Y. 1973. Differences in the progeny due to daylength and hormone treatment of the mother plant. Pages 59–80in W. Heydecker (ed.), Seed ecology. Pennsylvania State University Press, University Park. 578 pp.

    Google Scholar 

  • — 1980/1981a. Annual rhythm and position effect in the germinability ofMesembryanthemum nodiflorum. Israel J. Bot.29: 93–97.

    Google Scholar 

  • — 1980/1981b. Influences on seed germinability: Phenotypic maternal effects during seed maturation. Israel J. Bot.29: 105–117.

    Google Scholar 

  • Hall, H. M. &F. E. Clements. 1923. The phylogenetic method in taxonomy: North American species ofArtemisia, Chrysothamnus, andAtriplex. Publication no. 326. Carnegie Institution of Washington, Washington, D.C. 355 pp.

    Google Scholar 

  • Harper, J. L. 1977. Population biology of plants. Academic Press, New York. 892 pp.

    Google Scholar 

  • —,P. H. Lovell &K. G. Moore. 1970. The shapes and sizes of seeds. Annual Rev. Ecol. Syst.1: 327–356.

    Google Scholar 

  • Hartman, J. M. 1984. The role of wrack disturbance in the vegetation of a New England salt marsh. Doctoral Dissertation. University of Connecticut, Storrs, Connecticut. 130 pp.

    Google Scholar 

  • Hendrix, S. D. 1984. Variation in seed weight and its effects on germination inPastinaca sativa L. (Umbelliferae). Amer. J. Bot.71: 795–802.

    Google Scholar 

  • Hopkins, D. R. &V. T. Parker. 1984. A study of the seed bank of a salt marsh in northern San Francisco Bay. Amer. J. Bot.71: 348–355.

    Google Scholar 

  • Huiskes, A. H. L. 1979. Seedling survival ofHalimione portulacoides. Pages 45–46in Delta Institute Hydrobiological Research, Progress Report 1979. Yerseke, Netherlands. 79 pp.

    Google Scholar 

  • —, L. J.van Soelin &M. M. Markusse. 1985. Field studies on the variability of populations ofAster tripolium L. in relation to salt-marsh zonation. Vegetatio61: 163–169.

    Google Scholar 

  • Jefferies, R. L. &A. J. Davy 1979. Ecological processes in coastal environments. Blackwell Scientific Publications, Oxford, England. 684 pp.

    Google Scholar 

  • —— &J. Rudmick. 1981. Population biology of the salt-marsh annualSalicornia europaea agg. J. Ecology69: 17–31.

    Google Scholar 

  • —,A. Jensen &D. Bazely 1983. The biology of the annualSalicornia europaea agg., at the limits of its range in Hudson Bay. Canad. J. Bot.61: 762–773.

    Google Scholar 

  • Jerling, L. 1981. Effects of microtopography on the summer survival ofPlantago maritima seedlings. Holarctic Ecol.4: 120–126.

    Google Scholar 

  • —. 1984a. Composition and viability of the seed bank along a successional gradient on a Baltic sea shore meadow. Holarctic Ecol.6: 150–156.

    Google Scholar 

  • —. 1984b. The impact of some environmental factors on the establishment ofPlantago maritima seedlings and juveniles along a distributional gradient. Holarctic Ecol.7: 271–279.

    Google Scholar 

  • —. 1985. Population dynamics ofPlantago maritima along a distributional gradient on a Baltic seashore meadow. Vegetatio61: 155–161.

    Google Scholar 

  • — &M. Anderson 1982. Effects of grazing by cattle on the reproduction ofPlantago maritima. Holarctic Ecol.5: 405–411.

    Google Scholar 

  • —, &L.-E. Liljelund 1984. Dynamics ofPlantago maritima along a distributional gradient: A demographic study. Holarctic Ecol.7: 280–288.

    Google Scholar 

  • Josselyn, M. N. &R. J. Perez. 1981. Sediment characteristics and vegetation colonization. Pages 7–34in T. Niesen & M. Josselyn (eds.), The Hayward regional shoreline marsh restoration: Biological succession during the first year following dike removal. Technical Report 1. Tiburon Center for Environmental Studies, Tiburon, California. 185 pp.

    Google Scholar 

  • Karssen, C. M. 1970. The light promoted germination of the seeds ofChenopodium album L.: III. Effect of the photoperiod during growth and development of the plants on the dormancy of the produced seeds. Acta Bot. Neerl.19: 81–94.

    Google Scholar 

  • —. 1980/1981a. Environmental conditions and endogenous mechanisms involved in secondary dormancy of seeds. Israel J. Bot.29: 45–64.

    Google Scholar 

  • —. 1980/1981b. Pattern of change in dormancy during burial of seeds in soil. Israel J. Bot.29: 65–73.

    Google Scholar 

  • —. 1982. Seasonal pattern of dormancy in weed seeds. Pages 243–270in A. A. Khan (ed.), The physiology and biochemistry of seed development, dormancy and germination. Elsevier Biomédical Press, Amsterdam, The Netherlands. 547 pp.

    Google Scholar 

  • Keddy, P. A. &A. A. Reznicek. 1982. The role of seed banks in the persistence of Ontario’s coastal plain flora. Amer. J. Bot.69: 13–22.

    Google Scholar 

  • Khan, M. A. &I. A. Ungar 1984a. Seed polymorphism and germination responses to salinity stress inAtriplex triangularis. Willd. Bot. Gaz.145: 487–494.

    Google Scholar 

  • — &I. A. Ungar 1984b. The effect of salinity and temperature on the germination of polymorphic seeds and growth ofAtriplex triangularis Willd. Amer. J. Bot.71: 481–489.

    Google Scholar 

  • — &I. A. Ungar. 1985. The role of hormones in regulating the germination of polymorphic seeds and early seedling growth ofAtriplex triangularis under saline conditions. Physiol. Pl.63: 109–113.

    CAS  Google Scholar 

  • Leck, M. A. &K. J. Graveline 1979. The seed bank of a freshwater tidal marsh. Amer. J. Bot.66: 1006–1015.

    Google Scholar 

  • Lieffers, V. J. &J. M. Shay 1981. The effects of water level on the growth and reproduction ofScirpus maritimus var.paludosus. Canad. J. Bot.59: 118–121.

    Google Scholar 

  • Lieffers, V. J. &J. M. Shay. 1982. Seasonal growth and standing crop ofScirpus maritimus var.paludosus in Saskatchewan. Canad. J. Bot.60: 117–125.

    Google Scholar 

  • Livingston, R. B. &M. Allessio 1968. Buried viable seed in successional and forest stands, Harvard Forest, Massachusetts. Bull. Torrey Bot. Club95: 58–69.

    Google Scholar 

  • Major, J. &W. T. Pyott 1966. Burial of viable seeds in California bunchgrass sites and their bearing on the definition of a flora. Vegetatio13: 253–282.

    Google Scholar 

  • Marks, T. C. &A. J. Truscott 1985. Variation in seed production and germination ofSpartina anglica within a zoned saltmarsh. J. Ecol.73: 695–705.

    Google Scholar 

  • Maun, M. A. &P. B. Cavers 1971. Seed production and dormancy inRumex crispus. II. The effects of removal of various proportions of flowers at anthesis. Canad. J. Bot.49: 1841–1848.

    Google Scholar 

  • McGraw, D. C. &I. A. Ungar 1981. Growth and survival of the halophyteSalicornia europaea under saline field conditions. Ohio J. Sci.81: 109–113.

    Google Scholar 

  • McMahon, K. &I. A. Ungar 1978. Phenology, distribution and survival ofAtriplex triangularis Willd. in an Ohio salt pan. Amer. Midl. Naturalist100: 1–14.

    Google Scholar 

  • Milton, W. E. J. 1939. Occurrence of buried viable seeds in soils at different elevations on a salt marsh. J. Ecol.27: 149–159.

    Google Scholar 

  • Naylor, R. E. L. 1980. Effects of seed size and emergence time on subsequent growth of perennial ryegrass. New Phytol.84: 313–318.

    Google Scholar 

  • Nicholson, A. &P. A. Keddy 1983. The depth profile of a shoreline seed bank in Matchedash Lake, Ontario. Canad. J. Bot.61: 3293–3296.

    Google Scholar 

  • Okusanya, O. T. &I. A. Ungar 1983. The effects of time of seed production on the germination response ofSpergularia marina. Physiol. Pl.59: 335–342.

    CAS  Google Scholar 

  • Olmsted, N. &J. D. Curtis 1947. Seeds of the forest floor. Ecology28: 49–52.

    Google Scholar 

  • Oosting, H. J. &M. E. Humphreys 1940. Buried viable seeds in a successional series of old field and forest soils. Bull. Torrey Bot. Club67: 253–273.

    Google Scholar 

  • Osmond, C. B., O. Bjorkman &D. J. Anderson 1980. Physiological processes in plant ecology. Springer-Verlag, Berlin, West Germany. 468 pp.

    Google Scholar 

  • Paalvast, P. 1978. Population dynamics and chromosome counts inSalicornia. Pages 178–183in Delta Institute for Hydrobiological Research. Yerseke, Netherlands. 232 pp.

    Google Scholar 

  • Parker, V. T. &M. A. Leck. 1985. Relationships of seed banks to plant distribution patterns in a freshwater tidal wetland. Amer. J. Bot.72: 161–174.

    Google Scholar 

  • Philipupillai, J. 1982. Population biology ofSalicornia europaea in an inland salt marsh. Master of Science Thesis. Ohio University, Athens, Ohio.

    Google Scholar 

  • — &I. A. Ungar. 1984. The effect of seed dimorphism on the germination and survival ofSalicornia europaea L. populations. Amer. J. Bot.71: 542–549.

    Google Scholar 

  • Riehl, T. E. &I. A. Ungar 1982. Growth and ion accumulation inSalicornia europaea under saline field conditions. Oecologia54: 193–199.

    Google Scholar 

  • — &I. A. Ungar. 1983. Growth, water potential and ion accumulation in the inland halophyteAtriplex triangularis under saline field conditions. Acta Oecol., Oecol. Pl.4(18): 27–39.

    Google Scholar 

  • Roach, D. A. 1983. Buried seed and standing vegetation in two adjacent tundra habitats, northern Alaska. Oecologia60: 359–364.

    Google Scholar 

  • Roberts, H. A. &J. E. Neilson 1980. Seed survival and periodicity of seedling emergence in some species ofAtriplex, Chenopodium, Polygonum, andRumex. Ann. Appl. Biol.94: 111–120.

    Google Scholar 

  • Runge, F. 1972. Dauerquadratbeobachtungen bei salzwiesen-Assoziationen. Pages 419–425in R. Tuxen (ed.), Grundfragen und Methoden in der Pflanzensoziologie. Junk, The Hague, Netherlands. 533 pp.

    Google Scholar 

  • Silvertown, J. W. 1984. Phenotypic variety in seed germination behavior: The ontogeny and evolution of somatic polymorphism in seeds. Amer. Naturalist124: 1–16.

    Google Scholar 

  • Smith, L. M. &J. A. Kadlec 1983. Seed banks and their role during drawdown of a North American marsh. J. Appl. Ecol.20: 673–684.

    Google Scholar 

  • Sorenson, A. E. 1978. Somatic polymorphism and seed dispersal. Nature276: 174–176.

    Google Scholar 

  • Stanton, M. L. 1984. Seed variation in wild radish: Effect of seed size on the components of seedling and adult fitness. Ecology65: 1105–1112.

    Google Scholar 

  • Taschereau, P. M. 1972. Taxonomy and distribution ofAtriplex species in Nova Scotia. Canad. J. Bot.50: 1571–1594.

    Google Scholar 

  • Templeton, A. R. &D. A. Levin 1979. Evolutionary consequences of seed pools. Amer. Naturalist114: 232–249.

    Google Scholar 

  • Thompson, P. A. 1981. Variations in seed size within populationsof Silene dioica (L.) Clairv. in relation to habitat. Ann. Bot.47: 623–634.

    Google Scholar 

  • Ungar, I. A. 1970. Species-soil relationships on sulfate dominated soils in South Dakota. Amer. Midl. Naturalist83: 343–357.

    Google Scholar 

  • —. 1971.Atriplex patula var.hastata seed dimorphism. Rhodora73: 548–551.

    Google Scholar 

  • —. 1972. The vegetation of inland saline marshes of North America, north of Mexico. Pages 397–411in R. Tuxen (ed.), Grundfragen und Methoden in der Pflanzensoziologie. Junk, The Hague, Netherlands. 533 pp.

    Google Scholar 

  • —. 1974. Population dynamics of inland halophytic communities. Bull. Soc. Bot. Fr.121: 287–292.

    Google Scholar 

  • —. 1978. Halophyte seed germination. Bot. Rev.44: 233–264.

    CAS  Google Scholar 

  • —. 1979. Seed dimorphism inSalicornia europaea L. Bot. Gaz.140: 102–108.

    Google Scholar 

  • —. 1982. Germination ecology of halophytes. Pages 143–154in D. N. Sen & K. Rajpurohit (eds.), Contributions to the ecology of halophytes. Junk, The Hague, Netherlands. 272 pp.

    Google Scholar 

  • —. 1984a. Alleviation of seed dormancy inSpergularia marina. Bot. Gaz.145: 33–36.

    CAS  Google Scholar 

  • —. 1984b. Autecological studies withAtriplex triangularis. Pages 40–52in A. R. Tiedemann, E. D. McArthur, H. C. Stutz, K. R. Stevens & K. L. Johnson (eds.), Symposium on the biology ofAtriplex and related chenopods. General Technical Report INT-172. U.S.D.A. Forest Service, Provo, Utah. 309 pp.

    Google Scholar 

  • —,D. K. Benner &D. C. McGraw. 1979. The distribution and growth ofSalicorniaeuropaea on an inland salt pan. Ecology60: 329–336.

    Google Scholar 

  • — &T. E. Riehl. 1980. The effect of seed reserves on species composition in zonal halophyte communities. Bot. Gaz.141: 447–452.

    Google Scholar 

  • van der Valk, A. G. 1981. Succession in wetlands: A Gleasonian approach. Ecology62: 688–696.

    Google Scholar 

  • van der Valk, A. G. &C. B. Davis. 1976. The seed banks of prairie glacial marshes. Canad. J. Bot.54: 1832–1838.

    Google Scholar 

  • —. 1978. The role of seed banks in the vegetation dynamics of prairie glacial marshes. Ecology59: 322–335.

    Google Scholar 

  • Waisel, Y. 1972. Biology of halophytes. Academic Press, New York. 395 pp.

    Google Scholar 

  • Wandelberger, G. 1950. Zur Soziologie der kontinentalen Halophytenvegetation Mitteleuropas. Akad. Wiss. Wien Math.-Naturwiss. Kl., Denkschr.108: 1–179.

    Google Scholar 

  • Weaver, J. E. 1918. The quadrat method in teaching ecology. Plant World21: 267–283.

    Google Scholar 

  • Wertis, B. &I. A. Ungar 1986. Seed demography and seedling survival in a population ofAtriplex triangularis Willd. Amer. Midl. Naturalist116: 152–162.

    Google Scholar 

  • Westoby, M. 1981. How diversified seed germination behavior is selected. Amer. Naturalist118: 862–865.

    Google Scholar 

  • Whipple, S. S. 1978. The relationship of buried germinating seeds to vegetation of an old-growth Colorado subalpine forest. Canad. J. Bot.56: 1505–1509.

    Google Scholar 

  • Wiehe, P. O. 1935. A quantitative study of the influence of tide upon populations ofSalicornia europaea. J. Ecol.23: 323–333.

    Google Scholar 

  • Wilkon-Michalska, J. 1985. Structure and dynamics of the inland populations ofSalicornia patula. Vegetatio61: 145–154.

    Google Scholar 

  • Woodell, S. R. J. 1985. Salinity and seed germination patterns in coastal plants. Vegetatio61: 223–230.

    Google Scholar 

  • Yokoyama, S. &B. A. Schaal. 1985. A note on multiple-niche polymorphisms in plant populations. Amer. Naturalist125: 158–163.

    Google Scholar 

  • Young, J. A., R. A. Evans &J. D. Curtis. 1980. Germinable seeds and periodicity of germination in annual grasslands. Hilgardia49: 1–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ungar, I.A. Population ecology of halophyte seeds. Bot. Rev 53, 301–334 (1987). https://doi.org/10.1007/BF02858320

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858320

Keywords

Navigation