Skip to main content
Log in

Phylogenetic studies of a large data set. I. Bambusoideae, Andropogonodae, and Pooideae (Gramineae)

  • Published:
The Botanical Review Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 1994

Abstract

Large data sets, with several hundred terminal taxa, are becoming increasingly common in phylogenetic studies, but are proving very difficult to analyze because existing algorithms cannot explore the enormous number of trees efficiently. This article presents the results of an ongoing project to carry out phylogenetic analyses on a data base with 760 terminal taxa, the genera of the grass family (Gramineae), initially scored for more than 400 morphological and anatomical characters. The approach consists of three steps: (1) Using a small number of highly consistent characters, determine which large groups are demonstrably monophyletic and which may be polyphyletic. Treat the large monophyletic groups as single terminal taxa, and focus on the overall structure of the entire group. This results in a tree that links the large monophyletic “black boxes” with smaller basal groups; the latter can then be taken as provisional outgroups. (2) Use the outgroups defined in step 1 to analyze the cladistic structure of the big monophyletic groups, with a much larger set of characters. (3) Use a cladistically-guided sample of basal taxa from each large clade to redo the family-level analysis. Kellogg and Campbell (1987) carried out step 1 for the grass family and defined four monophyletic groups (subfamilies) that were derived from within a highly polyphyletic assemblage of genera. This article reports on step 2, analyses of three of the four monophyletic groups, the pooid clade (184 genera), the bambusoid clade (166 genera), and the Andropogonodae plus Arundinelleae (121 genera). 150–220 characters per clade, a much larger number than commonly used in morphological studies, were chosen from the comprehensive database. The initial descriptions of characters, their division into states, and their application to particular genera were the result of 20 years of work on the family by one of us (LW). Subsequent choice of characters for cladistic analysis was done by the other author (EAK) using only the pattern of variation of the character rather than the morphological descriptor, thus eliminating possible bias from a priori ideas of a character’s value. Each clade was analyzed in two ways, (1) with all terminal taxa for which there were adequate data, and (2) for only mono- and ditypic taxa; the latter analysis was to minimize the effect of possibly polyphyletic genera. In all cases, the reduced data set produced groups similar to those of the entire data set. The bambusoid clade consists of several well-defined subclades corresponding approximately to previously-recognized tribes. The relationships among the subclades are not resolved by these data. The Andro-pogonodae is made up of two major groups, an awned group and an awnless group; the latter includes taxa previously included in the Maydeae and also genera conventionally assigned to the Rottboelliinae. The pooid clade exhibits high homoplasy and no robust cladistic relationships. This is not likely to be caused by problems with generic circumscription, but may reflect extensive lateral gene flow (hybridization), rapid radiation followed by extensive anagenetic change, or true parallelism in morphological characters. The traditional tribes of the Pooideae are, with the exception of the Triticeae, apparently not monophyletic. Morphological cladograms are evaluated in light of data from molecular characters; while the results are generally consistent, there are too few molecular data yet to make meaningful comparisons.

Resumen

Grupos de datos grandes, con varios cientos de taxones terminales, son cada día más comunes en estudios filogenéticos. Sin embargo su análisis ha resultado ser muy difícil dado que los algoritmos existentes no pueden explorar eficientemente el enorme número de árboles. Este artículo presenta los resultados de un proyecto en progreso encaminado a realizar análisis filogenéticos en una base de datos de 760 taxones terminales, los géneros de la familia de las gramíneas, evaluados inicialmente en más de 400 caracteres morfológicos y anatómicos. El procedimiento consiste en tres pasos: (1) Usando un pequeño número de caracteres áltamente consistentes, determinar para cuales grupos grandes existe fuerte evidencia de que estos sean monofiléticos y cuales puedan ser polifiléticos. Considerar los grandes grupos monofiléticos como taxones terminales unitarios, y hacer énfasis en la estructura general del grupo entero. El resultado es un árbol que une las “cajas negras” monofiléticas con grupos basales más pequeños; estos últimos pueden entonces tomarse como grupos externos provisionales. (2) Utilizar los grupos externos definidos en el paso 1 para analizar la estructura cladística de los grupos monofiléticos grandes con un número de caracteres mucho mayor. (3) Utilizar una muestra de taxones basales, inferida cladísticamente, de cada uno de los clados grandes para rehacer el análisis a nivel de familia. Kellogg y Campbell (1987) realizaron el paso 1 para la familia de las gramíneas y definieron cuatro grupos monofiléticos (subfamilias), derivados a partir de un ensamblaje de géneros áltamente polifilético. Este articulo presenta un reporte del paso 2, los análisis de tres de los cuatro grupos monofiléticos: el clado pooide (184 géneros), el bambusoide (166 géneros) y juntas la supertribu Andropogonodae y la tribu Arundinelleae (121 géneros). Unos 150–220 caracteres por clado, un número mucho mayor de lo comúnmente usado en estudios morfológicos, fueron escogidos de la base de datos completa. La description inicial de los caracteres, su división en dos atributos y su aplicación a cada género fue el resultado de 20 años de trabajo en la familia por parte del segundo autor (LW). La subsiguiente selección de caracteres para el análisis cladístico fue llevada a cabo por la primera autora (EAK) utilizando únicamente el patrón de variación del carácter envés de su significado morfológico, eliminando así el posible sesgo proveniente de ideas a priori acerca del valor de un determinado carácter. Cada clado fue analizado de dos maneras, (1) con todos los taxones terminales para los cuales existían datos adecuados, y (2) únicamente con taxones mono- y ditípicos; este ultimo análisis, con el fin de minimizar el efecto de géneros que puedan ser polifiléticos. En todos los casos, la muestra reducida de datos produjo grupos similares a aquellos obtenidos con el juego completo. El clado bambusoide esta compuesto por varios subclados bien definidos, correspondiendo aproximadamente a las subtribus reconocidas en el pasado. No fue posible resolver las relaciones entre los subclados con estos datos. La supertribu Andropogonodae esta compuesta por dos grandes grupos, uno aristado y otro sin aristas; este último incluye taxones anteriormente incluidos en la tribu Maydeae, además de géneros convencionalmente asignados a la subtribu Rottboelliinae. El clado pooide demuestra alta homoplasia y relaciones cladfsticas no robustas. Es muy probable que lo anterior no sea el producto de problemas de circunscripción genérica, sino que puede reflejar, bien sea, un gran flujo genético lateral (hibridización), radiación rápida seguida de cambio genético anagénico extenso, o verdadero paralelismo en caracteres morfológicos. Las tribus tradicionales de la subfamilia Pooideae, exceptuando la tribu Triticeae, aparentemente no son monofiléticas. Los cladogramas morfológicos fueron evaluados a la luz de información proveniente de caracteres moleculares; mientras los resultados son generalmente consistentes, por lo pronto existen muy pocos datos moleculares como para hacer comparaciones significativas. (Translation kindly provided by S. Madriñan.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allard, M. W., &M. M. Miyamoto. 1992. Perspective: testing phylogenetic approaches with empirical data, as illustrated with the parsimony method. Molec. Biol. Evol.9: 778–786.

    PubMed  CAS  Google Scholar 

  • Archie, J. W. 1989. A randomization test for phylogenetic information in systematic data. Syst. Zool.38: 239–252.

    Article  Google Scholar 

  • Bennett, M. D. 1984. Pages 469–502in J. P. Gustafson (ed.), Gene manipulation in plant improvement. Plenum, New York.

    Google Scholar 

  • Bowden, W. M. 1960. Chromosome numbers and taxonomic notes on northern grasses. Canad. J. Bot.38: 117–131.

    Google Scholar 

  • Brown, R. 1810. Prodromus Florae Novae Hollandieae et Insulae Van-Diemen. Volume 1. J. Johnson and Co., London.

    Google Scholar 

  • — 1814. General remarks, geographical and systematical, on the botany of Terra Australis, Appendix 3. Pages 533–613in M. Flinders, A voyage to Terra Australis; undertaken for the purpose of completing the discovery of that vast country, and prosecuted in the years 1801, 1802, and 1803. W. Bulmer & Company, London

    Google Scholar 

  • Bruneau, A., &J. J. Doyle. 1993. Cladistic analysis of chloroplast DNA restriction site characters inErythrina (Leguminosae: Phaseolae). Syst. Bot.18: 229–241.

    Article  Google Scholar 

  • Campbell, C. S., P. E. Garwood, &L. P. Specht. 1986. Bambusoid affinities of the north temperate genusBrachyelytrum (Gramineae). Bull. Torrey Bot. Club.113: 135–141.

    Article  Google Scholar 

  • Carpenter, J. M. 1988. Choosing among multiple equally parsimonious cladograms. Cladistics4: 291–296.

    Google Scholar 

  • Chase, M. W., D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D. Mishler, M. R. Duvall, R. A. Price, H. G. Hills, Y.-L. Qiu, K. A. Kron, J. H. Rettig, E. Conti, J. D. Palmer, J. R. Manhart, K. J. Sytsma, H. J. Michaels, W. J. Kress, K. G. Karol, W. D. Clark, M. Hedrén, B. S. Gaut, R. K. Jansen, K.-J. Kim, C. F. Wimpee, J. F. Smith, G. R. Furnier, S. H. Strauss, Q.-Y. Xiang, G. M. Plunkett, P. S. Soltis, S. M. Swensen, S. E. Williams, P. A. Gadek, C. J. Quinn, L. E. Eguiarte, E. Golenberg, G. H. Learn, Jr.,S. W. Graham, S. C. H. Barrett, S. Dayanandan, &V. A. Albert. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid generbcL. Ann. Missouri Bot. Gard.80: 528–580.

    Article  Google Scholar 

  • Clayton, W. D. 1966. Studies in the Gramineae. 9. Andropogoneae. Kew Bull.20: 257–274.

    Article  Google Scholar 

  • — 1970. Studies in the Gramineae. 21.Coelorhachis andRhytachne: a study in numerical taxonomy. Kew Bull.24: 309–314.

    Article  Google Scholar 

  • — 1973. Studies in the Gramineae. 33. The awnless genera of Andropogoneae. Kew Bull.28: 49–58.

    Article  Google Scholar 

  • — &S. A. Renvoize. 1986. Genera graminum. Grasses of the world. Her Majesty’s Stationery Office, London.

    Google Scholar 

  • Clifford, H. T. 1987. Spikelet and floral morphology. Pages 21–30in T. R. Soderstrom, K. W. Hilu, C. S. Campbell, & M. E. Barkworth (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Cranston, P. S., &C. J. Humphries. 1988. Cladistics and computers: A chironomid conundrum? Cladistics4: 72–92.

    Google Scholar 

  • Cronquist, A. 1987. A botanical critique of cladism. Bot. Rev.53: 1–52.

    Google Scholar 

  • Cummings, M. P., L. M. King, & E. A. Kellogg, forthcoming. Slipped-strand mispairing in a plastid gene: rpoC2 in grasses (Poaceae). Molec. Biol. Evol.11. (In press.)

  • Dahlgren, R. M. T., H. T. Clifford, &P. F. Yeo. 1985. The families of the monocotyledons. Springer-Verlag, Heidelberg, Berlin, New York.

    Google Scholar 

  • Dallwitz, M. J. 1980. A general system for coding taxonomic descriptions. Taxon29: 41–46.

    Article  Google Scholar 

  • — 1992. DELTA and INTKEY.In R. Fortuner (ed.) Proceedings of workshop on artificial intelligence and modern computer methods for systematic studies in biology. University of California, Davis.

    Google Scholar 

  • Davis, J. I., & R. J. Soreng. 1993. Phylogenetic structure in the grass family (Poaceae), as determined from chloroplast DNA restriction site variation. Amer. J. Bot. (In press.)

  • deKoning, R., M. S. M. Sosef, &J. F. Veldkamp. 1983. A revision ofHeteropholis andThaumastochloa (Gramineae). Gard. Bull. Straits Settlem.36: 137–162.

    Google Scholar 

  • De Rijk, P., J.-M. Neefs, Y. Van de Peer, &R. DeWachter. 1992. Compilation of small ribosomal subunit RNA sequences. Nucl. Acids Res.20 (Suppl): 2075–2089.

    PubMed  Google Scholar 

  • DeSalle, R., &D. Grimaldi. 1991. Morphological and molecular systematics of the Drosophilidae. Annual Rev. Ecol. Syst.22: 447–475.

    Article  Google Scholar 

  • DeWet, J. M. J., &J. R. Harlan. 1970. Apomixis, polyploidy, and speciation inDichanthium. Evolution24: 270–277.

    Article  Google Scholar 

  • Doebley, J., M. Durbin, E. M. Golenberg, M. T. Clegg, &D. P. Ma. 1990. Evolutionary analysis of the large subunit of carboxylase (rbcL) nucleotide sequence among the grasses (Gramineae). Evolution44: 1097–1108.

    Article  CAS  Google Scholar 

  • Donoghue, M. J., J. A. Doyle, J. Gauthier, A. G. Kluge, &T. Rowe. 1989. The importance of fossils in phylogeny reconstruction. Annual Rev. Ecol. Syst.20: 431–460.

    Article  Google Scholar 

  • — &M. J. Sanderson 1992. The suitability of molecular and morphological evidence in reconstructing plant phylogeny. Pages 340–368in P. S. Soltis, D. E. Soltis, & J. J. Doyle (eds.), Molecular systematics of plants. Chapman and Hall, New York.

    Google Scholar 

  • Duvall, M. R., &J. F. Doebley. 1990. Restriction site variation in the chloroplast genome ofSorghum (Poaceae). Syst. Bot.15: 472–480.

    Article  Google Scholar 

  • M. T. Clegg, M. W. Chase, W. D. Clark, J. W. Kress, E. A. Zimmer, H. G. Hills, L. E. Eguiarte, J. F. Smith, B. S. Gaut, &G. H. Learn, Jr. 1993. Rapid radiation of ancestral monocotyledons into seven primary lineages indicated by analysis of the DNA sequence of a plastid locus obtained from one-hundred four species. Ann. Missouri Bot. Gard.80: 607–619.

    Article  Google Scholar 

  • —,P. M. Peterson, E. E. Terrell, &A. H. Christensen. 1993 Phylogeny of North American oryzoid grasses as construed from maps of plastid DNA restriction sites. Amer. J. Bot.80: 83–88.

    Article  CAS  Google Scholar 

  • Ellis, R. P. 1987a. Leaf anatomy of the genusEhrharta (Poaceae) in southern Africa: the Setacea group. Bothalia17: 75–89.

    Google Scholar 

  • — 1987b. Leaf anatomy of the genusEhrharta (Poaceae) in southern Africa: the Villosa group. Bothalia17: 195–204.

    Google Scholar 

  • Faith, D. P., &P. S. Cranston. 1991. Could a cladogram this short have arisen by chance alone? On permutation tests for cladistic structure. Cladistics7: 1–28.

    Article  Google Scholar 

  • Farris, J. S. 1969. A successive approximations approach to character weighting. Syst. Zool.18: 374–385.

    Article  Google Scholar 

  • — 1983. The logical basis of phylogenetic analysis. Pages 7–36in N. I. Platnick & V. A. Funk (eds.), Advances in Cladistics: Proceedings of the Second Meeting of the Willi Hennig Society. Columbia University Press, New York.

    Google Scholar 

  • -. 1988. Hennig86, version 1.5. Published by the author, Port Jefferson Station, N. Y.

  • — 1989. The retention index and the rescaled consistency index. Cladistics5: 417–419.

    Article  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution39: 783–791.

    Article  Google Scholar 

  • Friar, E., &G. Kochert. 1991. Bamboo germplasm screening with nuclear restriction fragment length polymorphisms. Theor. Appl. Genet.82: 697–703.

    Article  CAS  Google Scholar 

  • Funk, V. A. 1981. Special concerns in estimating plant phylogenies. Pages 73–86in V. A. Funk & D. R. Brooks (eds.), Advances in Cladistics: Proceedings of the First Meeting of the Willi Hennig Society. New York Botanical Garden, New York.

  • —. 1985. Phylogenetic patterns and hybridization. Ann. Missouri Bot. Gard.72: 681–715.

    Article  Google Scholar 

  • Gibbs-Russell, G. E. 1987. Taxonomy of the genusEhrharta (Poaceae) in southern Africa: the Setacea group. Bothalia17: 67–73.

    Google Scholar 

  • — &R. P. Ellis. 1987. Species groups in the genusEhrharta (Poaceae) in southern Africa. Bothalia17: 51–65.

    Google Scholar 

  • —&—. 1988. Taxonomy and leaf anatomy of the genusEhrharta (Poaceae) in southern Africa: the Dura group. Bothalia18: 165–171.

    Google Scholar 

  • Gutell, R. R., M. N. Schnare &M. W. Gray. 1992. A compilation of large subunit (23S- and 23S-like) ribosomal RNA structures. Nucl. Acids Res.20 (Suppl.): 2095–2109.

    Article  PubMed  CAS  Google Scholar 

  • Hamby, R. K. &E. A. Zimmer. 1988. Ribosomal RNA sequences for inferring phytogeny within the grass family (Poaceae). Pl. Syst. Evol.160: 29–37.

    Article  CAS  Google Scholar 

  • —&—. 1992. Ribosomal RNA as a phylogenetic tool in plant systematics. Pages 50–91in P. S. Soltis, D. E. Soltis, & J. J. Doyle (eds.), Molecular systematics of plants. Chapman and Hall, New York.

    Google Scholar 

  • Hattersley, P. W. 1987. Variations in photosynthetic pathway. Pages 49–64in T. R. Soderstrom, K. W. Hilu, C. S. Campbell, & M. E. Barkworth (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Hauser, D. L. &W. Presch. 1991. The effect of ordered characters on phylogenetic reconstruction. Cladistics7: 243–265.

    Article  Google Scholar 

  • Humphries, C. J. 1983. Primary data in hybrid analysis. Pages 89–103in N. I. Platnick & V. A. Funk (eds.), Advances in Cladistics: Proceedings of the Second Meeting of the Willi Hennig Society. Columbia University Press, New York.

    Google Scholar 

  • Jain, S. K. 1970. The genusManisuris L. (Poaceae) in India. Bull. Bot. Surv. India12: 6–17.

    Google Scholar 

  • Johnston, C. R. &L. Watson. 1976. Microhairs: a universal characteristic of non-festucoid grass genera? Phytomorphology26: 297–301.

    Google Scholar 

  • Kanno, A. &A. Hirai. 1992. Comparative studies of the structure of chloroplast DNA from four species ofOryza: cloning and physical maps. Theor. Appl. Genet.83: 791–798.

    Article  CAS  Google Scholar 

  • Kellogg, E. A. 1989. Comments on genomic genera in the Triticeae. Amer. J. Bot.76: 796–805.

    Article  Google Scholar 

  • — 1990. Ontogenetic studies of florets inPoa (Gramineae): allometry and heterochrony. Evolution44: 1978–1989.

    Article  Google Scholar 

  • — 1992. Tools for studying the chloroplast genome in the Triticeae (Gramineae): anEco RI map, a diagnostic deletion, and support forBromus as an outgroup. Amer. J. Bot.79: 186–197.

    Article  CAS  Google Scholar 

  • — &C. S. Campbell 1987. Phylogenetic analyses of the Gramineae. Pages 310–322in T. R. Soderstrom, K. W. Hilu, C. S. Campbell, & M. E. Barkworth (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Kluge, A. G., &J. S. Farris. 1969. Quantitative phyletics and the evolution of the anurans. Syst. Zool.18: 1–32.

    Article  Google Scholar 

  • Knobloch, I. W. 1968. A checklist of crosses in the Gramineae. East Lansing, Michigan.

  • Ladiges, P. Y., M. R. Newnham &C. J. Humphries. 1989. Systematics and biogeography of the Australian “green ash” eucalypts (Monocalyptus). Cladistics5: 345–364.

    Article  Google Scholar 

  • Lake, J. A. 1987. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Molec. Biol. Evol.4: 167–191.

    PubMed  CAS  Google Scholar 

  • Li, Wen-Hsiung &M. Gouy. 1992. Statistical methods for testing molecular phylogenies. Pages 249–277in M. M. Miyamoto & J. Cracraft (eds.), Phylogenetic analysis of DNA sequences. Oxford University Press, New York and Oxford.

    Google Scholar 

  • Maddison, D. R. 1991. The discovery and importance of multiple islands of most-parsimonious trees. Syst. Zool.40: 315–328.

    Article  Google Scholar 

  • Maddison, W. P., M. J. Donoghue &D. R. Maddison. 1984. Outgroup analysis and parsimony. Syst. Zool.33: 83–104.

    Article  Google Scholar 

  • — &D. R. Maddison (1992) MacClade. Analysis of phylogeny and character evolution. Version 3. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • McDade, L. A. 1990. Hybrids and phylogenetic systematics I. Patterns of character expression in hybrids and their implications for cladistic analysis. Evolution44: 1685–1700.

    Article  Google Scholar 

  • — 1992. Hybrids and phylogenetic systematics II. The impact of hybrids on cladistic analysis. Evolution46: 1329–1346.

    Article  Google Scholar 

  • Mickevich, M. F. 1982. Transformation series analysis. Syst. Zool.31: 461–478.

    Google Scholar 

  • — &J. S. Farris 1984. PHYSYS (phylogenetic analysis system). Documentation for VAX/VMS installation at Harvard University, Cambridge.

    Google Scholar 

  • Neff, N. A. 1986. A rational basis for a priori character weighting. Syst. Zool.35: 110–123.

    Article  Google Scholar 

  • Nixon, K. C. &J. I. Davis. 1991. Polymorphic taxa, missing values and cladistic analysis. Cladistics7: 233–241.

    Article  Google Scholar 

  • Pankhurst, R. J. 1986. A package of computer programs for handling taxonomic databases. Computer Applic. Biosci.2: 33–39.

    CAS  Google Scholar 

  • Petrova, O. A. 1975. On the main chromosome numbers in the genus Milium.Bot.Zurn.60: 393–394.

    Google Scholar 

  • Pimentel, R. A. &R. Riggins. 1987. The nature of cladistic data. Cladistics3: 201–209.

    Google Scholar 

  • Platnick, N. I., C. E. Griswold, &J. A. Coddington. 1991. On missing entries in cladistic analysis. Cladistics7: 337–343.

    Article  Google Scholar 

  • Pohl, R. W. &L. G. Clark. 1992. New chromosome counts forChusquea andAulonemia (Poaceae: Bambusoideae). Amer. J. Bot.79: 478–480.

    Article  Google Scholar 

  • Reeder, J. R. 1957. The embryo in grass systematics. Amer. J. Bot.44: 756–769.

    Article  Google Scholar 

  • Renvoize, S. A. 1985. A survey of leaf-blade anatomy in grasses. VI. Stipeae. Kew Bulletin38: 469–478.

    Article  Google Scholar 

  • Rieseberg, L. H., R. Carter, &S. Zona. 1990. Molecular tests of the hypothesized hybrid origin of two diploidHelianthus species (Asteraceae). Evolution44: 1498–1511.

    Article  CAS  Google Scholar 

  • Saitou, N. &M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4: 406–425.

    PubMed  CAS  Google Scholar 

  • Sanderson, M. J., &M. J. Donoghue. 1989. Patterns of variation in levels of homoplasy. Evolution43: 1781–1795.

    Article  Google Scholar 

  • Scholz, H. 1982. Über Mikro- und Makrohaare einigerPiptatherum und Stipa-Arten (Stipeae, Gramineae). Willdenowia12: 235–240.

    Google Scholar 

  • Schouten, Y. &J. F. Veldkamp. 1985. A revision ofAnthoxanthum includingHierochloë (Gramineae) in Malesia and Thailand. Blumea30: 319–351.

    Google Scholar 

  • Soderstrom, T. R. 1981. Some evolutionary trends in the Bambusoideae (Poaceae). Ann. Missouri Bot. Gard.68: 15–47.

    Article  Google Scholar 

  • — &R. P. Ellis. 1987. The position of bamboo genera and allies in a system of grass classification. Pages 225–238in T. R. Soderstrom, K. W. Hilu, C. S. Campbell, & M. E. Barkworth (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Soreng, R. J., J. I. Davis &J. J. Doyle. 1990. A phylogenetic analysis of chloroplast DNA restriction site variation in Poaceae subfam. Pooideae. Pl. Syst. Evol.172: 83–97.

    Article  Google Scholar 

  • Stebbins, G. L. 1950. Variation and evolution in plants. Columbia University Press, New York.

    Google Scholar 

  • — &B. Crampton. 1961. A suggested revision of the grass genera of temperate North America. Recent advances in botany,1: 133–145. University of Toronto Press.

    Google Scholar 

  • Stevens, P. F. 1991. Character states, morphological variation, and phylogenetic analysis: a review. Syst. Bot.16: 553–583.

    Article  Google Scholar 

  • Swofford, D. L. 1984. PAUP 2.2. Phylogenetic analysis using parsimony. Illinois Natural History Survey, Champaign, Illinois.

    Google Scholar 

  • — 1985. PAUP 2.4. Illinois Natural History Survey, Champaign, Illinois.

    Google Scholar 

  • — 1989. PAUP 3.0s. Illinois Natural History Survey, Champaign, Illinois.

    Google Scholar 

  • — 1992. PAUP 3.0 ß for UNIX. Illinois Natural History Survey, Champaign, Illinois.

    Google Scholar 

  • — 1993. PAUP: Phylogenetic analysis using parsimony, Version 3.1. Illinois Natural History Survey, Champaign, Illinois.

    Google Scholar 

  • — &G. J. Olsen. 1990. Phylogeny reconstruction. Pages 411–501in D. M. Hillis & C. Moritz (eds.), Molecular systematics. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Tateoka, R. 1962. Starch grains of endosperm in grass systematics. Bot. Mag. Tokyo75: 377–383.

    Google Scholar 

  • Veldkamp, J. F., R. deKoning &M. S. M. Sosef. 1986. Generic delimitation ofRottboellia and related genera (Gramineae). Blumea31: 281–307.

    Google Scholar 

  • Wagner, W. H., Jr. 1983. Reticulistics: The recognition of hybrids and their role in cladistics and classification. Pages 63–79in N. I. Platnick and V. A. Funk (eds.), Advances in Cladistics: Proceedings of the Second Meeting of the Willi Hennig Society. Columbia University Press, New York.

    Google Scholar 

  • Wang, Z. Y., G. &S. D. Tanksley. 1992. Polymorphism and phylogenetic relationships among species in the genusOryza as determined by analysis of nuclear RFLPs. Theor. Appl. Genet.83: 565–581.

    Article  Google Scholar 

  • Watson, L. 1971. Basic taxonomic data: the need for organisation over presentation and accumulation. Taxon20: 131–136.

    Article  Google Scholar 

  • —,H. T. Clifford &M. J. Dallwitz. 1985. The classification of Poaceae: subfamilies and supertribes. Austral. J. Bot.33: 433–484.

    Article  Google Scholar 

  • — &M. J. Dallwitz. 1988. Grass genera of the world: illustrations of characters, descriptions, classification, interactive identification, information retrieval. Australian National University, Canberra.

    Google Scholar 

  • - & -. 1991. Grass genera of the world: an INTKEY package for automated identification and information retrieval of data including synonyms, morphology, anatomy, physiology, cytology, classification, pathogens, world and local distribution, and references. 2nd edition. Flora Online 22.

  • Zhang, Guang-zhu. 1987. Studies on the chromosome numbers of some bamboo species with clump rhizomes. Pages 175–178in A. N. Rao, G. Dhanarajan, & C. B. Sastry (eds.), Recent research on bamboos. The Chinese Academy of Forestry, People’s Republic of China and International Development Research Centre, Canada.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02856578.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kellogg, E.A., Watson, L. Phylogenetic studies of a large data set. I. Bambusoideae, Andropogonodae, and Pooideae (Gramineae). Bot. Rev 59, 273–343 (1993). https://doi.org/10.1007/BF02857419

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02857419

Keywords

Navigation