Skip to main content
Log in

Pollen dispersal models in Quaternary plant ecology: Assumptions, parameters, and prescriptions

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Models of atmospheric dispersal of anemophilous pollen are important tools in Quaternary plant ecology for determining pollen-source areas and for applying distance-weightings to vegetation data in formal pollen-vegetation calibrations. The most widely applied model is Prentice’s model, which uses a modified form of Sutton’s equation for atmospheric diffusion to predict pollen-source areas from size of the depositional basin and a set of depositional parameters (deposition velocity of the pollen grains and mean wind speed) and atmospheric parameters (turbulence parameter, vertical diffusion coefficient). We review the physical theory underlying Sutton’s equation and Prentice’s model, explore the effects of different values of the depositional and atmospheric parameters on model predictions, and provide prescriptions for model application, parameter specification, and further research on pollen dispersal. Most applications of the models to pollen dispersal have assumed neutral atmospheric conditions. We argue that most pollen dispersal takes place in unstable atmospheric conditions, and prescribe appropriate values for the atmospheric parameters for unstable conditions. Our simulations using these parameters indicate more widespread pollen dispersal from a source than under neutral conditions. We review available data sets for sedimentation velocity of pollen grains, and compare the measured estimates with sedimentation velocities predicted from Stokes’s Law to assess validity of the data. Substantial variability exists among data sets, but several are suitable for application to pollen-dispersal models. Finally, we discuss aspects of release, dispersal, and deposition of anemophilous pollen that are in need of further theoretical and empirical study. Such studies will contribute not only to Quaternary plant ecology but also to understanding of pollination biology, population genetics, and functional morphology of pollen grains and pollen-bearing organs.

Zusammenfassung

Modelle für die atmosphärische Verteilung windverbreiteten Pollens sind wichtige Werkzeuge der Quartär-Pflanzenökologie zur Bestimmung von Polleneinzugsgebieten und um bei der mathematischen Kalibrierung des Zusammenhangs zwischen Pollen und Vegetation die Gewichtung von Entfernungen auf Vegetationsdaten anzuwenden. Das am häufigsten angewendente Modell ist das von Prentice, das eine angepaßte Form von Suttons Gleichung für atmosphärische Diffusion benutzt um Polleneinzugsgebiete auf Grundlage der Größe des Ablagerungsbeckens und einer Reihe von Ablagerungsparametern (Sinkgeschwindigkeit, vertikaler Diffusionskoeffizient) vorauszusagen. Wir besprechen die physikalische Theorie, die hinter Suttons und Prentices Modell steht, untersuchen, welchen Einfluß Ablagerungsparameter unterschiedler Größe sowie die atmosphärischen Parameter auf die Modellvorhersagen haben und geben Empfehlungen für die Anwendung der Modelle, Spezifizierung der Parameter und weiterführende Forschung zur Pollenverbreitung. Die meisten Anwendungen von Modellen zur Pollenausbreitung gehen von neutraler thermischer Schichtung aus. Wir erörtern, daßein Großteil der Pollenablagerung unter unstabilen Schichtungsverhältnissen stattfindet und beschreiben angemessene Werte für die atmosphärischen Parameter unter unstabilen Schichtungsverhältnissen. Unsere Simulationen, die diese Parameter benutzen, deuten darauf hin, daß eine weitere Pollenausbreitung von der Quelle aus stattfindet als bei neutraler Schichtung. Wir überprüfen verfügbare Datensätze zur Sinkgeschwindigkeit von Pollenkörnern und vergleichen die gemessenen Werte mit den Fallgeschwindigkeiten, die von Stokes Gesetz vorhergesagt werden, um die Richtigkeit der Daten zu beurteilen. Zwischen den Datensätzen bestehen beträchtlichte Unterschiede, aber einige sind für die Anwendung auf Pollenausbreitungs-Modelle geignet. Scließlich diskutieren wir die Aspekte der Freisetzung, Verbreitung und Ablagernug windverbreiteten Pollens, welche weitergehender theoretischer und empirischer Untersuchung bedürfen. Solche Untersuchungen werden nicht nur zur Quartär-Pflanzenökologie, sondern auch zum Verständnis von Bestäubungsbiologie, Populationsgenetik und funktioneller Morphologie von Pollenkörnern und pollentragenden Organen beitragen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Andersen, S. Th. 1970. The relative pollen productivity and pollen representation of north European trees, and correction factors for tree pollen spectra determined by surface pollen analyses from forests. Danmarks Geol. Undersøl., ser. II, 96: 1–199.

    Google Scholar 

  • Aylor, D. E. 1975. Deposition of particles in a plant canopy. J. Appl. Meteorol. 14: 52–57.

    Article  Google Scholar 

  • —. 1978. Dispersal in space and time: aerial pathogens. Pages 159–180in J.G. Horsfall & E.B. Cowling (eds.), Plant disease: an advanced treatise. Volume 2: How disease develops in populations. Academic Press, New York.

    Google Scholar 

  • —. 1982. Modeling spore dispersal in a barley crop. Agric. Meteorol. 26: 215–219.

    Article  Google Scholar 

  • —. 1987. Deposition gradients of urediniospores ofPuccinia recondita near a source. Phytopathology 77: 1442–1448.

    Article  Google Scholar 

  • —. 1989. Aerial spore dispersal close to a focus of disease. Agric. Forest Meteorol. 47: 109–122.

    Article  Google Scholar 

  • —. 1990. The role of intermittent wind in the dispersal of fungal pathogens. Ann. Rev. Phytopathol. 28: 73–92.

    Article  Google Scholar 

  • — &F. J. Ferrandino. 1989. Dispersion of spores released from an elevated line source within a wheat canopy. Boundary-Layer Meteorol. 46: 251–273.

    Article  Google Scholar 

  • — &J.-Y. Parlange. 1975. Ventilation required to entrain small particles from leaves. Pl. Physiol. 56: 97–99.

    CAS  Google Scholar 

  • —,H. A. McCartney &A. Bainbridge. 1981. Deposition of particles liberated in gusts of wind. J. Appl. Meteorol. 20: 1212–1221.

    Article  Google Scholar 

  • Barad, L. & J. J. Fuquay. 1962. The Green Glow Diffusion Program. Geophysical Research Paper no. 73, Air Force Cambridge Research Laboratory, U.S. Atomic Energy Commission Hanford Report HW-71400.

  • Bianchi, D. E., D. J. Schwemmin &W. H. Wagner Jr. 1959. Pollen release in the common ragweed (Ambrosia artemisiifolia). Bot. Gaz. 120: 235–243.

    Article  Google Scholar 

  • Blackmore S. &S. H. Barnes. 1986. Harmomegathic mechanisms in pollen grains. Pages 137–149in S. Blackmore & I. K. Ferguson (eds.), Pollen and spores: form and function. Academic Press, London.

    Google Scholar 

  • Bodmer, H. 1922. Über den Windpollen. Natur & Techn. 3: 294–298.

    Google Scholar 

  • Boyer, W. D. 1966. Longleaf pine pollen dispersal. Forest Sci. 12: 367–368.

    Google Scholar 

  • Brush, G. S. &L. M. Brush. 1972. Transport of pollen in a sediment-laden channel: a laboratory study. Amer. J. Sci. 272: 359–381.

    Article  Google Scholar 

  • ——. 1994. Transport and deposition of pollen in an estuary: signature of the landscape. Pages 33–46in A. Traverse (ed.), Sedimentation of organic particles. Cambridge University Press, Cambridge.

    Google Scholar 

  • Buell, M. F. 1947. Mass dissemination of pine pollen. J. Elisha Mitchell Sci. Soc. 63: 163–167.

    Google Scholar 

  • Burrows, F. M. 1975. Calculation of primary trajectories of dust seeds, spores and pollen in unsteady wind. New Phytol. 75: 389–403.

    Article  Google Scholar 

  • Calcote, R. 1995. Pollen source area and pollen productivity: evidence from forest hollows. J. Ecol. 83: 591–602.

    Article  Google Scholar 

  • Carter, M. V. 1965. Ascospore deposition inEutypa armeniacae. Austral. J. Agric. Res. 16: 825–836.

    Article  Google Scholar 

  • Chamberlain, A. C. 1953. Aspects of travel and deposition of aerosol and vapour clouds. Atomic Energy Research Establishment Report HP/R 1261. Harwell, England.

    Google Scholar 

  • —. 1967a. Deposition of particles to natural surfaces. Pages 138–164in P. H. Gregory & J. L. Monteith (eds.), Airborne microbes. Cambridge University Press, London.

    Google Scholar 

  • —. 1967b. Transport ofLycopodium spores and other small particles to rough surfaces. Proc. Roy Soc. A 296: 45–70.

    Article  Google Scholar 

  • —. 1975. The movement of particles in plant communities. Pages 155–203in J. L. Monteith (ed.), Vegetation and the atmosphere. Volume 1. Academic Press, New York.

    Google Scholar 

  • — &R. C. Chadwick. 1972. Deposition of spores and other particles on vegetation and soil. Ann. Appl. Biol. 71: 141–158.

    Article  Google Scholar 

  • — &P. Little. 1981. Transport and capture of particles by vegetation. Pages 147–173in J. Grace etal. (eds.), Plants and their atmospheric environments. Blackwells, Oxford.

    Google Scholar 

  • Colwell, R. N. 1951. The use of radioactive isotopes in determining spore distribution patterns. Amer. J. Bot. 38:511–523.

    Article  Google Scholar 

  • Crane, P. R. 1986. Form and function in wind dispersed pollen. Pages 179–202in S. Blackmore & I. K. Ferguson (eds.), Pollen and spores: form and function. Academic Press, London.

    Google Scholar 

  • Curtis, J. D. &N. R. Lersten. 1995. Anatomical aspects of pollen release from staminate flowers ofAmbrosia trifida (Asteraceae). Intl. J. Pl. Sci. 156: 29–36.

    Article  Google Scholar 

  • Davis, M. B. 1963. On the theory of pollen analysis. Amer. J. Sci. 261: 897–912.

    Article  Google Scholar 

  • Di-Giovanni, F., P. G. Kevan &M. E. Nasr. 1995. The variability in settling velocities of some pollen and spores. Grana 34: 39–44.

    Google Scholar 

  • Durham, O. C. 1943. The volumetric incidence of atmospheric allergens. I. Specific gravity of pollen grains. J. Allergy 14: 455–461.

    Article  Google Scholar 

  • —. 1946. The volumetric incidence of atmospheric allergens. III. Rate of fall of pollen grains in still air. J. Allergy 17: 70–78.

    Article  Google Scholar 

  • Dyakowska, J. 1936. Researches on the rapidity of the falling down of pollen of some trees. Bull. Acad Polon. Sci. Bl: 155–168.

    Google Scholar 

  • — &J. Zurzycki. 1959. Gravimetric studies on pollen. Bull. Acad. Polon. Sci. 7: 11–16.

    Google Scholar 

  • Ebell, L. F. &R. L. Schmidt. 1964. Meteorological factors affecting conifer pollen dispersal on Vancouver Island. Department of Forestry Publication no. 1036. Ottawa, Department of Forestry.

    Google Scholar 

  • Eisenhut, G. 1961. Untersuchungen über die Morphologie und Ökologie der Pollenkörner heimischer und fremdländischer Waldbäume. Forstwiss. Forsch. 15: 1–68.

    Google Scholar 

  • Fægri, K &L. van der Pijl. 1979. The principles of pollination ecology. Ed. 3. Pergamon Press, Oxford.

    Google Scholar 

  • Ferrandino, F. J. &D. E. Aylor. 1984. Settling speed of clusters of spores. Phytopathology 74: 969–972.

    Article  Google Scholar 

  • Gifford, F. A., Jr. 1968. An outline of theories of diffusion in the lower layers of the atmosphere. Pages 65–116in D. H. Slade (ed.), Meteorology and atomic energy. U.S. Atomic Energy Commission, Oak Ridge, Tennessee.

    Google Scholar 

  • —. 1976. Turbulent diffusion typing schemes—a review. Nuclear Safety 17: 68–86.

    Google Scholar 

  • Grace, J &M. A. Collins. 1976. Spore liberation from leaves by wind. Pages 185–198in C. H. Dickinson & T. F. Preece (eds.), Microbiology of aerial plant surfaces. Academic Press, London.

    Google Scholar 

  • Gregory, P. H. 1973. The microbiology of the atmosphere. Ed. 2. Leonard Hill, Aylesbury.

    Google Scholar 

  • Hanna, S. R., G. A. Briggs &R. P. Hosker Jr. 1982. Handbook on atmospheric diffusion. DOE/TIC-11223. U.S. Department of Energy, Springfield, VA.

    Google Scholar 

  • Harrington, J. B., Jr. &K. Metzger. 1963. Ragweed pollen density. Amer. J. Bot. 50: 532–539.

    Article  Google Scholar 

  • Heathcote, I. W. 1978. Differential pollen deposition and water circulation in small Minnesota lakes. Ph.D. thesis, Yale University, New Haven.

    Google Scholar 

  • Heslop-Harrison, J. 1979. An interpretation of the hydrodynamics of pollen. Amer. J. Bot. 66: 737–743.

    Article  Google Scholar 

  • Hesse, M. 1981. The fine structure of the exine in relation to the stickiness of angiosperm pollen. Rev. Palaeobot. Palynol. 35: 81–92.

    Article  Google Scholar 

  • Islitzer, N. F. &D. H. Slade. 1968. Diffusion and transport experiments. Pages 117–188in D. H. Slade (ed.), Meteorology and atomic energy. TID-24190. U.S. Atomic Energy Commission, Oak Ridge, TN.

    Google Scholar 

  • Jackson, S. T. 1990. Pollen source area and representation in small lakes of the northeastern United States. Rev. Palaeobot. Palynol. 63: 53–76.

    Article  Google Scholar 

  • —. 1991. Pollen representation of vegetational patterns along an elevational gradient. J. Veg. Sci. 2: 613–624.

    Article  Google Scholar 

  • —. 1994. Pollen and spores in Quaternary lake sediments as sensors of vegetation composition: theoretical models and empirical evidence. Pages 253–286in A. Traverse (ed.), Sedimentation of organic particles. Cambridge University Press, Cambridge.

    Google Scholar 

  • — &J. B. Kearsley. 1998. Representation of local forest composition in moss-polster pollen assemblages. J. Ecol. 86: 474–490.

    Article  Google Scholar 

  • — &A. Wong. 1994. Using forest patchiness to determine pollen source areas of closed-canopy pollen assemblages. J. Ecol. 82: 89–100.

    Google Scholar 

  • Jacobson, G. L., Jr. &R. H. W. Bradshaw. 1981. The selection of sites for paleovegetational studies. Quatem. Res. 16: 80–96.

    Article  Google Scholar 

  • Kabailiene, M. V. 1969. On formation of pollen spectra and restoration of vegetation. Trans. Inst. Geol. Vilnius 11: 1–148.

    Google Scholar 

  • Knoll, F. 1932. Über die Fernverbreitung des Blütenstaubes durch den Wind. Forschungen und Forstschriffte: Nachrichtenbl. Deutsch. Wiss. Tech. 8: 301–302.

    Google Scholar 

  • Koski, V. 1970. A study of pollen dispersal as a mechanism of gene flow in conifers. Commun. Inst. Forest. Fenniae 70.4: 1–78.

    Google Scholar 

  • Legg, B. J. 1983. Movement of plant pathogens in the crop canopy. Phil. Trans., Ser. B 302: 559–574.

    Article  Google Scholar 

  • — &R. I. Price. 1980. The contribution of sedimentation to aerosol deposition to vegetation with a large leaf area index. Atmosph. Environm. 14: 305–309.

    Article  Google Scholar 

  • Little, P. 1977. Deposition of 2.75, 5.0 and 8.5 μm particles to plant and soil surfaces. Environm. Pollut. 12: 293–305.

    Article  Google Scholar 

  • Lovett, G. M. 1981. Forest structure and atmospheric interactions: predictive models for subalpine fir forests. Ph.D. thesis, Dartmouth College, Hanover.

    Google Scholar 

  • — &W. A. Reiners. 1986. Canopy structure and cloud water deposition in subalpine coniferous forests. Tellus 38B: 319–327.

    Article  CAS  Google Scholar 

  • McCartney, H. A. &B. D. L. Fitt. 1985. Construction of dispersal models. Pages 107–143in C. A. Gilligan (ed.), Advances in plant pathology. Volume 3. Mathematical modeling of crop disease. Academic Press, London.

    Google Scholar 

  • McNown, J. S. &J. Malaika. 1950. Effects of particle shape on settling velocity at low Reynolds numbers. Amer. Geophys. Union Trans. 31: 74–82.

    Google Scholar 

  • -, -& H. R. Pramanik. 1951. Particle shape and settling velocity. Intl. Assoc. Hydraulic Res., Fourth Meeting, pp. 511–522.

  • Niklas, K. J. 1982. Simulated and empiric wind pollination patterns of conifer ovulate cones. Proc. Natl. Acad. Sci. U.S.A. 79: 510–514.

    Article  PubMed  CAS  Google Scholar 

  • —. 1984. The motion of windborne pollen grains around conifer ovulate cones: implications on wind pollination. Amer. J. Bot. 71: 356–374.

    Article  Google Scholar 

  • —. 1985. The aerodynamics of wind pollination. Bot. Rev. (Lancaster) 51: 328–386.

    Google Scholar 

  • — &K. T. Paw U. 1983. Conifer ovulate cone morphology: implications on pollen impaction patterns. Amer. J. Bot. 70: 568–577.

    Article  Google Scholar 

  • Pande, G. K., R. Pakrash &M. A. Hassam. 1972. Floral biology of barley (Hordeum vulgare L). Indian J. Agric. Sci. 48: 697–703.

    Google Scholar 

  • Pasquill, F. &F. B. Smith. 1983. Atmospheric diffusion. Ed. 3. Ellis Horwood Limited, Chichester.

    Google Scholar 

  • Payne, W. W. 1972. Observations of harmomegathy in pollen of Anthophyta. Grana 12: 93–98.

    Article  Google Scholar 

  • —. 1981. Structure and function in angiosperm pollen wall evolution. Rev. Palaeobot. Palynol. 35: 39–59.

    Article  Google Scholar 

  • Prentice, I. C. 1985. Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quatern. Res. 23: 76–86.

    Article  Google Scholar 

  • —. 1986. Forest-composition calibration of pollen data. Pages 799–816in B. Berglund (ed.), Hand-book of Holocene palaeoecology and palaeohydrology. John Wiley & Sons, Chichester.

    Google Scholar 

  • —. 1988. Records of vegetation in space and time: the principles of pollen analysis. Pages 17–42in B. Huntley & T. WebbIII (eds.), Vegetation history. Kluwer Academic, Dordrecht.

    Google Scholar 

  • Raynor, G. S. 1971. Wind and temperature structure in a coniferous forest and a contiguous field. Forest Sci. 17:351–363.

    Google Scholar 

  • —,J. V. Hayes &E. C. Ogden. 1974. Particulate dispersion into and within a forest. Boundary-Layer Meteorol. 7: 429–456.

    Article  Google Scholar 

  • ———. 1975. Particulate dispersion from sources within a forest. Boundary-Layer Meteorol. 9: 257–277.

    Article  Google Scholar 

  • Sarvas, R. 1952. On the flowering of birch and the quality of seed crop. Commun. Inst. Forest. Fenniae 40.7: 1–38.

    Google Scholar 

  • —. 1962. Investigations on the flowering and seed crop ofPinus sylvestris. Commun. Inst. Forest. Fenniae 53.4: 1–198.

    Google Scholar 

  • —. 1968. Investigations on the flowering and seed crop ofPicea abies. Commun. Inst. Forest. Fenniae 67.5: 1–84.

    Google Scholar 

  • Sehmel, G. A. 1980. Particle and gas dry deposition: a review. Atmosph. Environm. 14: 983–1011.

    Article  Google Scholar 

  • Sharp, W. M. &H. H. Chisman. 1961. Flowering and fruiting in the white oaks. I. Staminate flowering through pollen dispersal. Ecology 42: 365–372.

    Article  Google Scholar 

  • Silen, R. R. 1962. Pollen dispersal considerations for Douglas-fir. J. Forest. 60: 790–795.

    Google Scholar 

  • Singer, I. A. &M. E. Smith. 1953. Relation of gustiness to other meteorological parameters. J. Meteorol. 10: 121–126.

    Google Scholar 

  • ——. 1966. Atmospheric dispersion at Brookhaven National Laboratory. Intl. J. Air & Water Pollut. 10: 125–135.

    CAS  Google Scholar 

  • Starr, J. R. 1967. Deposition of particulate matter by hydrometeors. Quart. J. Roy. Meteorol. Soc. 93: 516–521.

    Article  Google Scholar 

  • Stewart, N. G., H. J. Gale &R. N. Crooks. 1958. The atmospheric diffusion of gases discharged from the chimney of the Harwell Reactor BEPO. Intl. J. Air Pollut. 1: 87–102.

    CAS  Google Scholar 

  • Sugita, S. 1993. A model of pollen source area for an entire lake surface. Quatern. Res. 39: 239–244.

    Article  Google Scholar 

  • —. 1994. Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. J. Ecol. 82: 881–897.

    Article  Google Scholar 

  • Sutton, O. G. 1947a. The problem of diffusion in the lower atmosphere. Quart. J. Roy. Meterol. Soc. 73: 257–281.

    Article  Google Scholar 

  • —. 1947b. The theoretical distribution of airborne pollution from factory chimneys. Quart. J. Roy. Meterol. Soc. 73: 426–436.

    Article  Google Scholar 

  • —. 1953. Micrometeorology. McGraw-Hill, New York.

    Google Scholar 

  • Tauber, H. 1965. Differential pollen dispersion and the interpretation of pollen diagrams. Danmarks Geol. Undersøl., Række 2, Number 89.

  • Thorne, P. G., G. M. Lovett &W. A. Reiners. 1982. Experimental determination of droplet impaction on canopy components of balsam fir. J. Appl. Meteorol. 21: 1413–1416.

    Article  Google Scholar 

  • Tomlinson, P. B. 1994. Functional morphology of saccate pollen in conifers with special reference to Podocarpaceae. Intl. J. Pl. Sci. 155: 699–715.

    Article  Google Scholar 

  • Tonsor, S. J. 1985. Leptokurtic pollen-flow, non-leptokurtic gene flow in a wind-pollinated herb,Plantago lanceolata L. Oecologia 67: 442–446.

    Article  Google Scholar 

  • Vogel, S. 1981. Life in moving fluids: the physical biology of flow. Princeton University Press, Princeton.

    Google Scholar 

  • Wang, C.-W., T. O. Perry &A. G. Johnson. 1960. Pollen dispersal of slash pine (Pinus elliottii Engelm.) with special reference to seed orchard management. Silvae Genet. 9: 78–86.

    Google Scholar 

  • Whitehead, D. R. 1964. Fossil pine pollen and full-glacial vegetation in southeastern North Carolina. Ecology 45: 767–777.

    Article  Google Scholar 

  • —. 1983. Wind pollination: some ecological and evolutionary perspectives. Pages 97–108in L. Real (ed.), Pollination biology. Academic Press, New York.

    Google Scholar 

  • Wright, J. W. 1952. Pollen dispersion of some forest trees. United States Forest Service, Northeastern Forest Experiment Station Paper 60.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, S.T., Lyford, M.E. Pollen dispersal models in Quaternary plant ecology: Assumptions, parameters, and prescriptions. Bot. Rev 65, 39–75 (1999). https://doi.org/10.1007/BF02856557

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02856557

Keywords

Navigation