Skip to main content
Log in

Particle trapping in stratified estuaries: consequences of mass conservation

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Estuarine turbidity maxima (ETM) can retain suspended particulate matter (SPM) through advection, settling, aggregation, and nonlinearities in bed processes. We define a parameter space descriptive of ETM water column particle trapping processes through a scaling analysis of the local and integral SPM balances. There are six primary non-dimensional parameters for the large particles or aggregates that are typically trapped in an ETM. Rouse numberP, the ratio of settling velocityW S to the shear velocityU *, describes the material trapped in the ETM in terms of the local vertical balance between vertical mixing and aggregate settling. Advection numberA = PDU/UT scales the landward transport of SPM in terms of flood-ebb velocity difference (ΔU; the internal asymmetry) and maximum tidal current (U T ). Supply number Sr =PU r /U t defines SPM supply and removal (U r is river flow). Changes in the estuarine inventory of SPM are described in terms of a Trapping EfficiencyE, a ratio of peak ETM concentration to fluvial or marine supply concentration. The effects of aggregation and disaggregation in the integral dynamic balance are quantified by a Floc number Θ = Φ/Г that describes the balance of aggregation (Φ) and disaggregation (Г). The balance between erosion and deposition at the bed is described by the Erosion number Π = Ψ/Ω, the ratio of erosion (Ψ) to deposition(Ω). The non-dimensional, integral SPM conservation equation is then used to examine steady and unsteady particle trapping scenarios, including adjustments to a change in river flow and to a neap-spring transition in salinity intrusion and stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Brennan, M. L., D. H. Schoellhamer, J. R. Burau, andS. G. Monismith. 2002. Tidal asymmetry and variability of bed shear stress and sediment bed flux at a site in San Francisco Bay, CA, p. 93–107.In J. C. Winterwerp and C. Kranenburg (eds.), Fine Sediment Dynamics in the Marine Environment. Elsevier, Amsterdam, The Netherlands.

    Chapter  Google Scholar 

  • Burchard, H. andH. Baumert. 1998. The formation of estuarine turbidity maxima due to density effects in the salt wedge: A hydrodynamic process study.Journal of Physical Oceanography 28: 309–321.

    Article  Google Scholar 

  • Chisholm, T. A. 1999. A two-component aggregation model. Ph.D. Dissertation, College of William and Mary, Williamsburg, Virginia.

    Google Scholar 

  • Crump, B. C., J. A. Baross, andC. A. Simenstad. 1998. Dominance of particle-attached bacteria in the Columbia River estuary.Aquatic Microbiology and Ecology 14:7–18.

    Article  Google Scholar 

  • Cudaback, C. N. andD. A. Jay. 2000. Tidal asymmetry in an estuarine pycnocline: 1, Depth and thickness.Journal of Geophysical Research 105:26,237–26,252.

    Article  Google Scholar 

  • Dyer, K. andE. M. Evans. 1989. Dynamics of turbidity maximum in a homogeneous tidal channel.Journal of Coastal Research 5: 23–30.

    Google Scholar 

  • Fain, A. M. V., D. A. Jay, D. J. Wilson, P. M. Orton, andA. M. Baptista. 2001. Seasonal, monthly and tidal patterns of particulate matter dynamics in a stratified estuary.Estuaries 24:770–786.

    Article  CAS  Google Scholar 

  • Festa, J. F. andD. V. Hansen. 1978. Turbidity maxima in partially mixed estuaries—a two-dimensional numerical model.Estuarine Coastal and Shelf Science 7:347–359.

    Google Scholar 

  • Friedrichs, C. T., B. A. Armbrust, andH. E.de Swart. 1998. Hydrodynamics and equilibrium sediment dynamics of shallow, funnel-shaped tidal estuaries, p. 315–328.In J. Dronkers and M. Scheffers (eds.), Physics of Estuaries and Coastal Seas. Balkema Press, Rotterdam, The Netherlands.

    Google Scholar 

  • Geyer, W. R. 1993. The importance of suppression of turbulence by stratification on the estuary turbidity maximum.Estuaries 16: 113–115.

    Article  Google Scholar 

  • Geyer, W. R., J. D. Woodruff, andP. Traykovski. 2001. Sediment transport and trapping in the Hudson River estuary.Estuaries 24:670–679.

    Article  Google Scholar 

  • Han, M. andD. F. Lawler. 1992. Relative insignificance of G in flocculation.Journal of the American Water Works Association 84: 79–91.

    CAS  Google Scholar 

  • Hansen, D. V. andM. Rattray, Jr. 1965. Gravitational circulation in straits and estuaries.Journal of Marine Research 23:104–122.

    Google Scholar 

  • Jay, D. A. andJ. D. Musiak. 1994. Particle trapping in estuarine turbidity maxima.Journal of Geophysical Research 99:20,446–20,461.

    Article  Google Scholar 

  • Jay, D. A. andJ. D. Musiak. 1996. Internal tidal asymmetry in channel flows: Origins and consequences, p. 219–258.In C. Pattiaratchi (ed.), Mixing Processes in Estuaries and Coastal Seas, American Geophysical Union, Coastal and Estuarine Sciences Monograph, Washington, D.C.

    Google Scholar 

  • Jay, D. A. andJ. D. Smith. 1990a. Residual circulation in shallow, stratified estuaries. I. Highly-stratified systems.Journal of Geophysical Research 95:711–732.

    Article  Google Scholar 

  • Jay, D. A. andJ. D. Smith. 1990b. Circulation, density distribution and neap-spring transitions in the Columbia River Estuary.Progress in Oceanography 25:81–112.

    Article  Google Scholar 

  • Jay, D. A., R. J. Uncles, J. Largier, W. R. Geyer, J. Vallino, andW. R Boynton. 1997. A review of recent developments in estuarine scalar flux estimation.Estuaries 20:262–280.

    Article  Google Scholar 

  • Knowles, S. C. andJ. T. Wells. 1998. In situ aggregate analysis camera (ISAAC): A quantitative tool for analyzing fine-grained suspended material.Limnology and Oceanography 43:1954–1962.

    Google Scholar 

  • Lerczak, J. A. andW. R Geyer. 2006. Mechanisms driving the time-dependent salt flux in a partially mixed estuary.Journal of Physical Oceanography 36:2296–2311.

    Article  Google Scholar 

  • McCool, W. W. andJ. D. Parsons. 2004. Sedimentation from buoyant fine-grained suspensions.Continental Shelf Research 24: 1129–1142.

    Article  Google Scholar 

  • Orton, P. M., D. Wilson, D. A. Jay, and A. M. V. Fain. 2002. High resolution sediment dynamics in salt-wedge estuaries, p. 61–67.In G. Gelfenbaum and G. Kaminsky (eds.), Southwest Washington Coastal Erosion Workshop Report 2000, U.S. Geological Survey Open File Report 02-229. Menlo Park, California.

  • Ruiz, J. andA. Izquierdo. 1997. A simple model for the break-up of marine aggregates by turbulent shear.Oceanologica Acta 20: 597–605.

    Google Scholar 

  • Sanford, L. P., S. E. Suttles, andJ. P. Halka. 2001. Reconsidering the physics of the Chesapeake Bay estuarine turbidity maximum.Estuaries 24:655–669.

    Article  CAS  Google Scholar 

  • Scully, M. E. andC. T. Friedrichs. 2003. Influences of asymmetries in overlying stratification on near-bed turbulence and sediment suspension in a partially mixed estuary.Ocean Dynamics 53:208–219.

    Article  Google Scholar 

  • Scully, M. E. and C. T. Friedrichs. 2007. Sediment pumping by tidal asymmetry in a partially mixed estuary.Journal of Geophysical Research 112, CO 7028, doi 10.1029/2006JC003784.

  • Simenstad, C. A., D. Reed, D. A. Jay, F. Prahl, L. Small, andJ. A. Baross. 1995. LMER in the Columbia River Estuary: An interdisciplinary approach to investigating couplings between hydrological, geochemical and ecological processes, p. 437–444.In K. R. Dyer and R. J. Orth (eds.), Changing Particle Fluxes in Estuaries: Implications from Science to Management. Olsen and Olsen Press, Friedensborg, Denmark.

    Google Scholar 

  • Sternberg, R. W., I. Berhane, andA. S. Ogston. 1999. Measurement of size and settling velocity of suspended aggregates on the northern California continental shelf.Marine Geology 154:43–53.

    Article  Google Scholar 

  • Winterwerp, J. C. 2002. Scaling parameters for high-concentrated mud suspensions in tidal flow, p. 171–186.In J. C. Winterwerp and C. Kranenburg (eds.), Fine Sediment Dynamics in the Marine Environment. Elsevier, Amsterdam, The Netherlands.

    Chapter  Google Scholar 

  • Winterwerp, J. C., A. W. Bruens, N. Gratiot, C. Kranenburg, M. Mory, andE. A. Toorman. 2002. Dynamics of concentrated benthic suspension layers, p. 41–55.In J. C. Winterwerp and C. Kranenburg (eds.), Fine Sediment Dynamics in the Marine Environment. Elsevier, Amsterdam, The Netherlands.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Jay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jay, D.A., Orton, P.M., Chisholm, T. et al. Particle trapping in stratified estuaries: consequences of mass conservation. Estuaries and Coasts: J ERF 30, 1095–1105 (2007). https://doi.org/10.1007/BF02841399

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02841399

Keywords

Navigation