Skip to main content
Log in

Subsequence pointwise ergodic theorems for operators inL p

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper certain subsequence ergodic theorems which have previously been known in the case of measure preserving point transformations are extended to Dunford-Schwartz operators, positive isometries, and power bounded Lamperti operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aaronson, M. Lin and B. Weiss,Mixing properties of Markov operators and ergodic transformations, and ergodicity of Cartesian products, Isr. J. Math.33 (1979), 198–224.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. A. Akcoglu and A. del Junco,Convergence of averages of point transformations, Proc. Am. Math. Soc.49 (1975), 265–266.

    Article  MATH  Google Scholar 

  3. M. A. Akcoglu and L. Sucheston,Dilations of positive contractions in L p spaces, Can. Math. Bull.20 (1977), 285–292.

    MATH  MathSciNet  Google Scholar 

  4. J. R. Baxter and J. H. Olsen,Weighted and subsequential ergodic theorems, Can. J. Math.35 (1983), 145–166.

    MATH  MathSciNet  Google Scholar 

  5. A. Bellow,Ergodic properties of isometries in L p spaces, 1<p< ∞, Bull. Am. Math. Soc.70 (1964), 366–371.

    Google Scholar 

  6. A. Bellow,Perturbation of a sequence, Advances in Mathematics, to appear.

  7. A. Bellow, R. L. Jones and J. Rosenblatt,Convergence of moving averages, Ergodic Theory and Dynamical Systems10 (1990), 43–62.

    MATH  MathSciNet  Google Scholar 

  8. A. Bellow and V. Losert,On sequences of density zero in ergodic theory, Contemporary Mathematics26 (1984), 49–60.

    MATH  MathSciNet  Google Scholar 

  9. A. Bellow and V. Losert,The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences, Trans. Am. Math. Soc.288 (1985), 307–345.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Bourgain,On the maximal ergodic theorem for certain subsets of the integers, Isr. J. Math.61 (1988), 39–72.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Bourgain,On the pointwise ergodic theorem on L p for arithmetic sets, Isr. J. Math.61 (1988), 73–84.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Bourgain,Pointwise ergodic theorems for arithmetic sets, IHES Publication, October, 1989.

  13. R. V. Chacon,A class of linear transformations, Proc. Am. Math. Soc.15 (1964), 560–564.

    Article  MATH  MathSciNet  Google Scholar 

  14. I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai,Ergodic Theory, Springer-Verlag, New York, 1982.

    MATH  Google Scholar 

  15. J. Doob,Stochastic Processes, Wiley, New York, 1953.

    MATH  Google Scholar 

  16. N. Dunford and J. Schwartz,Linear Operators, I, Wiley, New York, 1958.

    MATH  Google Scholar 

  17. S. R. Foguel,The Ergodic Theory of Markov Processes, Van Nostrand, New York, 1969.

    MATH  Google Scholar 

  18. P. R. Halmos,Lectures on Ergodic Theory, Math. Soc. Japan, 1956.

    MATH  Google Scholar 

  19. R. L. Jones,Inequalities for pairs of ergodic transformations, Radovi Matematicki4 (1988), 55–61.

    MATH  MathSciNet  Google Scholar 

  20. R. L. Jones,Necessary and sufficient conditions for a maximal ergodic theorem along subsequences, Ergodic Theory and Dynamical Systems7 (1987), 203–210.

    Article  MATH  MathSciNet  Google Scholar 

  21. C. Kan,Ergodic properties of Lamperti operators, Can. J. Math.30 (1978), 1206–1214.

    MATH  MathSciNet  Google Scholar 

  22. U. Krengel,Ergodic Theorems, De Gruyter Studies in Mathematics, 6, New York, 1985.

  23. J. Lamperti,On the isometries of certain function spaces, Pacific J. Math.8 (1958), 459–466.

    MATH  MathSciNet  Google Scholar 

  24. E. Lorch,Spectral Theory, Oxford University Press, New York, 1962.

    MATH  Google Scholar 

  25. J. Neveu,Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco, 1965.

    MATH  Google Scholar 

  26. J. H. Olsen,Dominated estimates of convex combinations of commuting isometries, Isr. J. Math.11 (1972), 1–13.

    Article  MATH  MathSciNet  Google Scholar 

  27. V. A. Rohlin,On the fundamental ideas of measure theory, Mat. Sb.25, 107–150; Am. Math. Soc. Transl.71 (1952).

    Google Scholar 

  28. C. Ryll-Nardzewski,Topics in ergodic theory, inProceedings of the Winter School in Probability, Karpacz, Poland, Lecture Notes in Mathematics472, Springer-Verlag, Berlin, 1975, pp. 131–156.

    Chapter  Google Scholar 

  29. M. Wierdl,Pointwise ergodic theorem along the prime numbers, Isr. J. Math.64 (1988), 315–336.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by NSF Grant DMS-8910947.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, R.L., Olsen, J. Subsequence pointwise ergodic theorems for operators inL p . Israel J. Math. 77, 33–54 (1992). https://doi.org/10.1007/BF02808009

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02808009

Keywords

Navigation