Skip to main content
Log in

Benzodiazepine-induced decreases in extracellular concentrations of dopamine in the nucleus accumbens after acute and repeated administration

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

In vivo microdialysis was used to assess the effects of acute and repeated injections of the benzodiazepine midazolam on extracellular dopamine (DA) concentrations in the nucleus accumbens. Acute administration of midazolam (5 mg/kg, SC) elicited a 22% decrease in extracellular DA in the nucleus accumbens but failed to affect DA concentrations in the striatum. Similarly, six spaced intravenous infusions of midazolam, at a dose that has previously been found to support self-administration (0.05 mg per infusion), produced a 50% decrease in extracellular DA in the nucleus accumbens. In order to assess the effects of subchronic midazolam injections, two groups of rats were given injections of saline or midazolam (5 mg/kg, SC) for 14 days (two injections per day). A subsequent challenge injection of midazolam (5 mg/kg) decreased extracellular DA in the nucleus accumbens by 25% in both groups, indicating that neither tolerance nor sensitization occurred during the repeated drug administration. These experiments indicate (1) that midazolam differentially affects meso-accumbens and nigrostriatal DA neurons, and (2) that the midazolam-induced decrease in extracellular DA in the nucleus accumbens is not affected by repeated drug administration. The data further suggest that the rewarding effects of midazolam are not associated with increased release of DA in the nucleus accumbens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carboni E, Imperato A, Perezzani L, Di Chiara G (1989) Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats. Neuroscience 28: 653–661

    Article  PubMed  CAS  Google Scholar 

  • Chesselet MF (1984) Presynaptic regulation of neurotransmitter release in the brain: Facts and hypothesis. Neuroscience 12: 347–375

    Article  PubMed  CAS  Google Scholar 

  • Church WH, Justice Jr JB (1987) Rapid sampling and determination of extracellular dopamine in vivo. Anal Chem 59: 712–716

    Article  PubMed  CAS  Google Scholar 

  • Damsma G, Day J, Fibiger HC (1989) Lack of tolerance to nicotine-induced dopamine release in the nucleus accumbens. Eur J Pharmacol 168: 363–368

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85: 5274–5278

    Article  PubMed  Google Scholar 

  • Fibiger HC, Phillips AG (1986) Reward, motivation, cognition: psychobiology of mesotelencephalic dopamine systems. In: Bloom FE, Geiger SR (eds) Handbook of physiology—the nervous system IV. American Physiological Society. Bethesda, pp 647–668

    Google Scholar 

  • Fibiger HC, Phillips AG (1988) Mesocorticolimbic dopamine systems and reward. In: Kalivas PW, and Nemeroff CB (eds) Ann NY Acad 537: 206–213

  • File SE (1986) Aversive and appetitive properties of anxiogenic and anxiolytic agents. Behav Brain Res 21: 189–194

    Article  PubMed  CAS  Google Scholar 

  • Finlay JM, Szostak C, Fibiger HC (1989) Further characterization of midazolam self-administration in the rat. Behav Pharmacol 1: 13–23

    PubMed  Google Scholar 

  • Fuchs V, Burbes E, Coper H (1984) The influence of haloperidol and aminooxyacetic acid on etonitaxene, alcohol, diazepam and barbital consumption. Drug Alcohol Depend 14: 179–186

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Agnati LF, Bolme P, Hökfelt T, Lidbrink P, Ljungdahl A, Perez de la Mora M, Ogren S-O (1975) The possible involvement of GABA mechanisms in the action of benzodiazepines on central catecholamine neurons. In: Costa E, Greengard P (eds) Mechanism of action of benzodiazepines. Raven Press, New York, pp 45–59

    Google Scholar 

  • Grace AA, Bunney BS (1979) Paradoxical GABA excitation of nigral dopaminergic cells: indirect mediation through reticulata inhibitory neurons. Eur J Pharmacol 59: 211–218

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1985) Opposing effects of striatonigral feedback pathways on midbrain dopamine cell activity. Brain Res 333: 271–284

    Article  PubMed  CAS  Google Scholar 

  • Imperato A, Di Chiara G (1984) Trans-striatal dialysis coupled to reverse phase high performance liquid chromatography with electrochemical detection. A new method for the study of the in vivo release of endogenous dopamine and metabolites. J Neurosci 4: 966–977

    PubMed  CAS  Google Scholar 

  • Imperato A, Puglisi-Allegra S, Zocchi A, Scrocco MG, Casolini P, Angelucci L (1990) Stress activation of limbic and cortical dopamine release is prevented by ICS 205–930 but not by diazepam. Eur J Pharmacol 175: 211–214

    Article  PubMed  CAS  Google Scholar 

  • Ishiko J, Inagaski C, Takaori S (1983) Effects of diazepam, nitrazepam and brotizolam on dopamine turnover in the olfactory tubercle, nucleus accumbens and caudate nucleus of rats. Jpn J Pharmacol 33: 706–708

    PubMed  CAS  Google Scholar 

  • Kirk RF (1982) Experimental design: procedures for the behavioral sciences, 2nd edn. Brooks/Cole, Belmont, California

    Google Scholar 

  • Kubota A, Kuwahara A, Hakkei A, Nakamura K (1986) Drug dependence tests on a new anesthesia inducer, midazolam. Folia Pharmacol Jpn 88: 125–158

    CAS  Google Scholar 

  • Laurent JP, Mangold M, Humbel U, Haefely W (1983) Reduction by two benzodiazepines and pentobarbitone of the multiunit activity in substantia nigra, hippocampus, nucleus locus coeruleus and nucleus raphe dorsalis of incéphale isolé rats. Neuropharmacology 22: 501–511

    Article  PubMed  CAS  Google Scholar 

  • Marcel D, Weissmann-Nanopoulos D, Mach E, Pujol JF (1986) Benzodiazepine binding sites: localization and characterization in the limbic system of the rat brain. Brain Res Bull 16: 573–596

    Article  PubMed  CAS  Google Scholar 

  • Mereu G, Fanni B, Serra M, Concas A, Biggio G (1983) Beta-carbolines activate neurons in the substantia nigra pars reticulata: an effect reversed by diazepam and Ro 15-1788. Eur J Pharmacol 96: 129–132

    Article  PubMed  CAS  Google Scholar 

  • Möhler H, Okada T, Heitz PH, Ulrich J (1978) Biochemical identification of the site of action of benzodiazepines in human brain by3H-diazepam binding. Life Sci 22: 985–996

    Article  PubMed  Google Scholar 

  • Naruse T, Asami T (1987) Intravenous self-administration of diazepam in rats. Eur J Pharmacol 135: 356–373

    Article  Google Scholar 

  • Nomikos GG, Spyraki C (1988) Effects of ritanserin on the rewarding properties ofd-amphetamine, morphine and diazepam revealed by conditioned place preference in rats. Pharmacol Biochem Behav 30: 853–858

    Article  PubMed  CAS  Google Scholar 

  • Nomikos GG, Damsma G, Wenkstern D, Fibiger HC (1989) Acute effects of bupropion on extracellular dopamine concentrations in rat striatum and nucleus accumbens studied by in vivo microdialysis. Neuropsychopharmacology 2: 273–279

    Article  PubMed  CAS  Google Scholar 

  • O’Brien DP, White J (1987) Inhibition of non-dopamine cells in the ventral tegmental area by benzodiazepines: relationship to A10 dopamine cell activity. Eur J Pharmacol 142: 343–354

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, London

    Google Scholar 

  • Pellegrino LF, Pellegrino AS, Cushman AJ (1979) A stereotaxis atlas of the rat Brain, 2nd edn. Plenum Press, New York

    Google Scholar 

  • Pilotto R, Singer G, Overstreet D (1984) Self-injection of diazepam in naive rats: effects of dose, schedule and blockade of different receptors. Psychopharmacology 84: 174–177

    Article  PubMed  CAS  Google Scholar 

  • Polc P, Laurent JP, Scherschlicht R, Haefely W (1981) Electrophysiological studies on the specific benzodiazepine antagonists Ro 15-1788. Naunyn-Schmiedeberg’s Arch Pharmacol 316: 317–325

    Article  CAS  Google Scholar 

  • Robinson TE, Camp DM (1990) Does amphetaminepreferentially increase the extracellular concentration of dopamine in the mesolimbic system of freely moving rats? Neuropsychopharmacology 3: 163–173

    PubMed  CAS  Google Scholar 

  • Ross RJ, Waszczak BL, Lee EK, Walters JR (1982) Effects of benzodiazepines on single unit activity in the substantia nigra pars reticulata. Life Sci 31: 1025–1035

    Article  PubMed  CAS  Google Scholar 

  • Spyraki C, Fibiger HC (1988) A role for the mesolimbic dopamine system in the reinforcing properties of diazepam. Psychopharmacology 94: 133–137

    Article  PubMed  CAS  Google Scholar 

  • Spyraki C, Kanadjian A, Varonos D (1985) Diazepam-induced place preference conditioning: appetitive and antiaversive properties. Psychopharmacology 87: 225–232

    Article  PubMed  CAS  Google Scholar 

  • Szostak C, Finlay JM, Fibiger HC (1987) Intravenous self-administration of the short-acting benzodiazepine midazolam in the rat. Neuropharmacology 26: 1673–1676

    Article  PubMed  CAS  Google Scholar 

  • Westerink BHC, Tuinte MHJ (1986) Chronic use of intracerebral dialysis for the in vivo measurements of 3,4-dihydroxyphenylethylamine and its metabolite 3,4-dihydroxyphenylacetic acid. J Neurochem 46: 181–184

    Article  PubMed  CAS  Google Scholar 

  • White FJ, Wang RY (1984) A 10 dopamine neurons: role of autoreceptors in determining firing rate and sensitivity to dopamine agonists. Life Sci 34: 1161–1170

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (1987) The role of reward pathways in the development of drug dependence. Pharmacology Ther 35: 227–263

    Article  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94: 469–492

    Article  PubMed  CAS  Google Scholar 

  • Wood PL, Ettienne P, Lal S, Nair NPV (1984) Benzodiazepines and gabaergic regulation of nigrostriatal neurons: lack of tolerance. Prog Neuro-psychopharmacol Biol Psychiatry 8: 779–783

    Article  CAS  Google Scholar 

  • Yim CY, Mogenson GJ (1980) Electrophysiological studies of neurons in the ventral tegmental area of tsai. Brain Res 181: 301–313

    Article  PubMed  CAS  Google Scholar 

  • Young WS, Kuhar MJ (1980) Radiohistochemical localization of benzodiazepine receptors in rat brain. J Pharmacol Exp Ther 212: 337–345

    PubMed  CAS  Google Scholar 

  • Zetterström T, Fillenz M (1990) Local administration of flurazepam has different effects on dopamine release in striatum and nucleus accumbens: a microdialysis study. Neuropharmacology 29: 129–134

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finlay, J.M., Damsma, G. & Fibiger, H.C. Benzodiazepine-induced decreases in extracellular concentrations of dopamine in the nucleus accumbens after acute and repeated administration. Psychopharmacology 106, 202–208 (1992). https://doi.org/10.1007/BF02801973

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02801973

Key words

Navigation