Skip to main content
Log in

Metanephric development in serum-free organ culture

  • Published:
In Vitro - Plant Aims and scope Submit manuscript

Summary

A new mouse metanephric organ culture system has been developed to study mammalian renal development. The system permits in vitro organotypic differentiation in a serum-free, hormone supplemented medium consisting of Dulbecco’s minimal essential medium (MEM) and Ham’s F12 medium supplemented with insulin, 5 µg/ml; PGE1, 25 ng/ml; T3, 3.2 pg/ml; hydrocortisone, 5 µg/ml; and transferrin, 5 µg/ml. In this system, metanephric development continues morphologically beyond the S-shaped tubule stage. A well differentiated proximal tubule forms with a well defined brush border, specialized intercellular connections, and an apical endocytic network. In addition, a unique devascularized glomerulus, with highly differentiated podocytes surrounding areas of basement membrane, forms entirely from epithelial elements.

The present organ culture model goes beyond the limitations of previously described systems in that it does not require separation of nephrogenic blastema from ureteric bud, nor require animal serum or nonspecific tissue extracts for metanephric development. The model is thus suited for morphological, biochemical, and endocrinological study of normal and abnormal renal organogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Grobstein, C. Inductive epithelio-mesenchymal interaction in cultured organ rudiments of the mouse. Science 118: 52–55; 1953.

    Article  PubMed  CAS  Google Scholar 

  2. Saxén, L.; Koskimics, O.; Lahti, A.; MicHinen, H.; Rapola, J.; Wartiovaara, J. Differentiation of kidney mesenchyme in an experimental model system. Adv. Morphogen. 7: 251–291; 1968.

    Google Scholar 

  3. Gossens, C. L.; Unsworth, B. R. Evidence for a two-step mechanism operating duringin vitro mouse kidney tubulogenesis. J. Embryol. Exp. Morphol. 28: 615–631; 1972.

    PubMed  CAS  Google Scholar 

  4. Emura, M.; Tanaka, T. Development of endothelia and erythroid cells in the mouse metaneophrogenic mesenchyme in culture with the fetal liver. Dev. Growth Diff. 14: 237–246; 1972.

    Article  Google Scholar 

  5. Borghese, E.; Dani, A. M. Observations on the differentiationin vitro of mouse metanephros. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 164: 83–96; 1969.

    Article  Google Scholar 

  6. Taub, M.; Chuman, L.; Saier, M.; Sato, G. Growth of Madin-Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented, serum-free medium. Proc. Natl. Acad. Sci. USA 76: 3338–3342; 1979.

    Article  PubMed  CAS  Google Scholar 

  7. Taub, M.; Sato, G. Growth of functional primary cultures of kidney epithelial cells in defined medium. J. Cell. Physiol. 105: 369–378; 1980.

    Article  PubMed  CAS  Google Scholar 

  8. Gruneberg, H. The development of some external features in mouse embryos. J. Hered. 34: 88–92; 1943.

    Google Scholar 

  9. Vainio, T.; Jainchill, J.; Clement, K.; Saxén, L. Studies on kidney tubulogenesis VI. Survival and nucleic acid metabolism of differentiating mouse metanephrogenic mesenchymein vitro. J. Cell Comp. Physiol. 66: 311–318; 1965.

    Article  CAS  Google Scholar 

  10. Larsson, L. The ultrastructure of the developing proximal tubule in the rat kidney. J. Ultrastruct. Res. 51: 119–139; 1975.

    Article  PubMed  CAS  Google Scholar 

  11. Bernstein, J. Morphologic development of the metanephric tubule. Proc. 7th Int. Congr. Nephrol. (Montreal) 1978: 249–254.

  12. Avner, E. D.; Villee, D.; Grupe, W. E. Ontogeny of proximal tubular antigen (FX1A) in metanephric organ culture (abstr.). Kidney Int. 19: 179; 1981.

    Google Scholar 

  13. Pegg, D.; Bernstein, J.; Hook, J. B. Biochemical and ultrastructural correlates of substrate stimulation of renal organic anion transport. Proc. Soc. Exp. Biol. Med. 151: 720–725; 1976.

    PubMed  CAS  Google Scholar 

  14. Reeves, W.; Caulfield, J. P.; Farquhar, M. G. Differentiation of epithelial foot processes and filtration slits: Sequential appearance of occluding junctions, epithelial polyanion, and slit membranes in developing glomeruli. Lab. Invest. 39: 90–100; 1978.

    PubMed  CAS  Google Scholar 

  15. Bernstein, J.; Cheng, F.; Roszka, J. Glomerular differentiation in metanephric culture. Lab. Invest. 45: 183–190; 1981.

    PubMed  CAS  Google Scholar 

  16. Potter, E. Development of the human glomerulus. Arch. Pathol. 80: 241–255; 1965.

    PubMed  CAS  Google Scholar 

  17. Kazimierczak, J. Development of the renal corpuscle and the juxtaglomerular apparatus: A light and electron microscopic study. Acta Pathol. Microbiol. Scan. [A] (Suppl. 218): 1–64; 1971.

    Google Scholar 

  18. Grobstein, C. Inductive interaction in the development of mouse metanephros. J. Exp. Zool. 130: 319–355; 1955.

    Article  Google Scholar 

  19. Grobstein, C. Transfilter induction of tubules in mouse metanephrogenic mesenchyme. Exp. Cell. Res. 10: 424–440; 1956.

    Article  PubMed  CAS  Google Scholar 

  20. Gluecksohn-Waelsh, S.; Rondon Rota, T. Development in organ tissue culture of kidney rudiments from mutant mouse embryos. Dev. Biol. 7: 432–444; 1963.

    Article  Google Scholar 

  21. Rapola, J.; Niemi, M. Studies in kidney tubulogenesis. Cytochemical localization of phosphatase and dehydrogenase activities during the formation of tubulesin vitro. Z. Anat. Entwickl. Gesch. 124: 309–320; 1965.

    Article  CAS  Google Scholar 

  22. Wartiovaara, J. Cell contacts in relation to cytodifferentiation in metanephrogenic mesenchymein vitro. Ann. Med. Exp. Fenn. 44: 469–503; 1966.

    Google Scholar 

  23. Brown, A. L. An analysis of the developing metanephros in mouse embryos with abnormal kidneys. Am. J. Anat. 47: 117–171; 1931.

    Article  Google Scholar 

  24. Ludwig, E. Embryologische beobachtungen an den harnorganen der maus und des goldhamsters. Acta Anat. (Basel) 29: 1–19; 1957.

    CAS  Google Scholar 

  25. Norgaard, J. O. R. Retraction of epithelial cell foot processes during culture of isolated glomeruli. Lab. Invest. 38: 320–329; 1978.

    PubMed  CAS  Google Scholar 

  26. Scheinman, J. I.; Fish, A. J.; Kim, Y.; Michael, A. F. C3b receptors on human glomeruliin vitro: Loss in culture. Am. J. Pathol. 92: 147–154; 1978.

    PubMed  CAS  Google Scholar 

  27. Oberly, T. D.; Burkholder, P. M.; Barber, T. A.; Hwang, C. C. Cytochemical characterization of cultured adult guinea pig glomerular cells. Invest. Cell. Pathol. 2: 27–43; 1979.

    Google Scholar 

  28. Oberly, T. D.; Murphy-Ullrich, J. E.; VicMuth, J. The effect of fetal calf serum on the biology of cultured primary glomerular cells. Diagn. Histopath. 4: 117–128; 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avner, E.D., Ellis, D., Temple, T. et al. Metanephric development in serum-free organ culture. In Vitro Cell.Dev.Biol. -Plant 18, 675–682 (1982). https://doi.org/10.1007/BF02796422

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02796422

Key words

Navigation