Skip to main content
Log in

Identification of inhibitory components toxic toward zymomonas mobilis CP4(pZB5) xylose fermentation

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Zymomonas mobilis CP4(pZB5) is a recombinant bacterium that can produce ethanol from both xylose and glucose. The ethanol-producing efficiency of this organism is substantially impeded by toxic substances present in pretreated hydrolyzates or solid biomass substrates. Acetic acid and furfural (a pentose degradation product) are highly toxic to this organism at levels envisioned for a pretreated-hardwood liquid hydrolyzate. In addition, lignin degradation products and 5-hydroxymethylfurfural (a hexose degradation product) have a moderately toxic effect on the organism. Of the compounds studied, organic acids and aldehydes were found to be more inhibitory than lignin acids or the one alkaloid studied. Acetone:water and methanol extracts of solid biomass samples from red oak, white oak, and yellow poplar are toxic toZymomonas cell growth and ethanol production, with the extracts from white oak being the most toxic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lawford, H. G. (1988),Appl. Biochem. Biotechnol. 17, 203–219.

    Article  CAS  Google Scholar 

  2. Baratti, J. and Bu’Lock, J. D. (1986),Biotechnol. Adv. 4, 95–115.

    Article  CAS  Google Scholar 

  3. Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982),Adv. Biochem. Eng. 23, 27–84.

    Google Scholar 

  4. Lee, K. J., Tribe, D. E., and Rogers, P. L. (1979),Biotechnol. Lett. 1, 421–426.

    Article  CAS  Google Scholar 

  5. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. (1995),Science 267, 240–243.

    Article  CAS  Google Scholar 

  6. Keim, C. R. (1983),Enzyme Microbiol. Technol. 5, 103–114.

    Article  CAS  Google Scholar 

  7. Rodriguez, E., and Callieri, D. A. S. (1986),Biotechnol. Lett. 8, 745–748.

    Article  CAS  Google Scholar 

  8. Beavan, M., Zawadzki, B., Droniuk, R., Lawford, H., and Fein, J., (1989),Appl. Biochem. Biotechnol. 20/21, 319–326.

    Article  Google Scholar 

  9. Parekh, S. R., Parekh, R.S., and Wayman, M. (1989),Process Biochem. 24, 88–91.

    CAS  Google Scholar 

  10. Pettersen, R. C. (1984),ACS Symp. Ser. 207, 57–126.

    CAS  Google Scholar 

  11. McMillan, J. D. (1994),ACS Symp. Ser. 556, 411–437.

    Article  Google Scholar 

  12. Ingram, L. O., Alterthum, F., Ohta, K., and Beall, D. S. (1990),Dev. Ind. Microbiol 31, 21–30.

    CAS  Google Scholar 

  13. Tran, A. V., and Chambers, R. P. (1986),Enzyme Microb. Technol. 8, 439–444.

    Article  CAS  Google Scholar 

  14. örsa, F., and Holmbom, B. (1994),J. Pulp and Paper Sci. 20, 361–366.

    Google Scholar 

  15. Kermasha, S., Goetghebeur, M., and Dumont, J. (1995),J. Agric. Food Chem. 43, 708–716.

    Article  CAS  Google Scholar 

  16. Kaar, W. E., Cool, L. G., Merriman, M. M., and Brink, D. L. (1991),J. Wood Chem. Technol. 11, 447–463.

    Article  CAS  Google Scholar 

  17. Morris, W. E. and Johnson, D. B. (1967), inProcedures for the Chemical Analysis of Wood Products, USDA Forest Products Lab, Madison, WI.

    Google Scholar 

  18. Technical Association of the Pulp and Paper Industry (TAPPI) Standard Methods, T13, T222, T250, and T211.

  19. Antal, M. J., Leesomboon, T., Mok, W. S., and Richards, G. N. (1991),Carbohydr. Res. 217, 71–85.

    Article  CAS  Google Scholar 

  20. Timell, T. E. (1964),Adv. Carbohydr. Chem. 19, 247–302.

    CAS  Google Scholar 

  21. Fengel, D. and Wegener, G. (1989),Wood: Chemistry, Ultrastructure, Reactions, 2nd ed., Walter de Gruyter, Berlin.

    Google Scholar 

  22. Rowe, J. W. and Conner, A. H., (1979), inExtractives in Eastern Hardwoods, A Review, Gen. Tech. Rep., FPL-18, USDA Forest Products Laboratory, p. 67.

  23. Hillis, W.E. (1987), inHeartwood and Tree Exudates, Springer-Verlag, Berlin, p. 268.

    Google Scholar 

  24. Scalbert, A. (1992), inPlant Polyphenols, Hemingway, R. W. and Laks, P. E., eds., Plenum, New York, pp. 259–280.

    Google Scholar 

  25. Frazer, F. R. and McCaskey, T. A. (1989),Biomass 18, 31–42.

    Article  CAS  Google Scholar 

  26. Lapierre, C., Rolando, C., and Monties, B. (1983),Holzforchung 37, 189–198.

    Article  CAS  Google Scholar 

  27. Stanek, D. A. (1958),TAPPI 41, 601–609.

    CAS  Google Scholar 

  28. McCaskey, T. A., Rice, M. D., and Smith, R. C. (1986), inBiomass Energy Development, Smith, W. H., ed., Plenum, New York, pp. 573–585.

    Google Scholar 

  29. Luck, G., Liao, H., Murray, N. J., Grimmer, H. R., Warminski, E. E., Williamson, M. P., Lilley, T. H., and Haslam, E. (1994),Phytochemistry 37, 357–371.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard F. Helm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranatunga, T.D., Jervis, J., Helm, R.F. et al. Identification of inhibitory components toxic toward zymomonas mobilis CP4(pZB5) xylose fermentation. Appl Biochem Biotechnol 67, 185–198 (1997). https://doi.org/10.1007/BF02788797

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788797

Index Entries

Navigation