Skip to main content
Log in

Self-similar sets of zero Hausdorff measure and positive packing measure

Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove that there exist self-similar sets of zero Hausdorff measure, but positive and finite packing measure, in their dimension; for instance, for almost everyu ∈ [3, 6], the set of all sums ∑ 80 a n 4n a n 4n with digits witha n ∈ {0, 1,u} has this property. Perhaps surprisingly, this behavior is typical in various families of self-similar sets, e.g., for projections of certain planar self-similar sets to lines. We establish the Hausdorff measure result using special properties of self-similar sets, but the result on packing measure is obtained from a general complement to Marstrand’s projection theorem, that relates the Hausdorff measure of an arbitrary Borel set to the packing measure of its projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Bandt and S. Graf,Self-similar sets 7. A characterization of self-similar fractals with positive Hausdorff measure, Proceedings of the American Mathematical Society114 (1992), 995–1001.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Carleson,Selected Problems on Exceptional Sets, Van Nostrand, New York, 1967.

    MATH  Google Scholar 

  3. M. Denker and M. Urbański,Geometric measures for parabolic rational maps, Ergodic Theory and Dynamical Systems12 (1992), 53–66.

    MATH  MathSciNet  Google Scholar 

  4. K. J. Falconer,Dimensions and measures of quasi self-similar sets, Proceedings of the American Mathematical Society106 (1989), 543–554.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. J. Falconer,Fractal Geometry. Mathematical Foundations and Applications, Wiley, New York, 1990.

    MATH  Google Scholar 

  6. K. J. Falconer and J. D. Howroyd,Projection theorems for box-counting and packing dimensions, Mathematical Proceedings of the Cambridge Philosophical Society119 (1996), 287–295.

    Article  MATH  MathSciNet  Google Scholar 

  7. W. Feller,An Introduction to Probability Theory and its Applications II, Wiley, New York, 1966.

    MATH  Google Scholar 

  8. J. D. Howroyd,On dimension and on the existence of sets of finite positive Hausdorff measure, Proceedings of the London Mathematical Society (3)70 (1995), 581–604.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. E. Hutchinson,Fractals and self-similarity, Indiana University Mathematics Journal30 (1981), 713–747.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Järvenpää,On the upper Minkowski dimension, the packing dimension, and orthogonal projections, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica Dissertationes, no. 99, 1994.

  11. R. Kaufman,On Hausdorff dimension of projections, Mathematika15 (1968), 153–155.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Keane, M. Smorodinsky and B. Solomyak,On the morphology of γ-expansions with deleted digits, Transactions of the American Mathematical Society347 (1995), 955–966.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Kenyon,Projecting the one-dimensional Sierpinski gasket, Israel Journal of Mathematics97 (1997), 221–238.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. C. Lagarias and Y. Wang,Integral self-affine tilings in ℝ n I, Journal of the London Mathematical Society (2)54 (1996), 161–179.

    MATH  MathSciNet  Google Scholar 

  15. P. Mattila,Orthogonal projections, Riesz capacities and Minkowski content, Indiana University Mathematics Journal39 (1990), 185–198.

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Mattila,Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995.

  17. D. Mauldin and K. Simon,The equivalence of some Bernoulli convolutions to Lebesgue measure, Proceedings of the American Mathematical Society126 (1998), 2733–2736.

    Article  MATH  MathSciNet  Google Scholar 

  18. C. G. Moreira,Stable intersections of Cantor sets and homoclinic bifurcations, Annales de l’Institut Henri Poincaré. Analyse Non Linéaire13 (1996), 741–781.

    MathSciNet  Google Scholar 

  19. J. Palis and F. Takens,Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge University Press, 1992.

  20. Y. Peres and B. Solomyak,Absolute continuity of Bernoulli convolutions, a simple proof, Mathematical Research Letters3 (1996), 231–239.

    MATH  MathSciNet  Google Scholar 

  21. Y. Peres and B. Solomyak,Self-similar measures and intersections of Cantor sets, Transactions of the American Mathematical Society350 (1998), 4065–4087.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Pollicott and K. Simon,The Hausdorff dimension of λ-expansions with deleted digits, Transactions of the American Mathematical Society347 (1995), 967–983.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Schief,Separation properties for self-similar sets, Proceedings of the American Mathematical Society122 (1994), 111–115.

    Article  MATH  MathSciNet  Google Scholar 

  24. B. Solomyak,On the random series Σ±λ i (an Erdős problem), Annals of Mathematics (2)142 (1995), 611–625.

    Article  MATH  MathSciNet  Google Scholar 

  25. B. Solomyak,Measure and dimension of some fractal families, Mathematical Proceedings of the Cambridge Philosophical Society124 (1998), 531–546.

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Sullivan,Entropy, Hausdorff dimensions old and new, and limit sets of geometrically finite Kleinian groups, Acta Mathematica153 (1984), 259–277.

    Article  MATH  MathSciNet  Google Scholar 

  27. S. J. Taylor and C. Tricot,Packing measure and its evaluation for a Browninan path, Transactions of the American Mathematical Society288 (1985), 679–699.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuval Peres.

Additional information

Research of Y. Peres was partially supported by NSF grant #DMS-9803597.

Research of K. Simon was supported in part by the OTKA foundation grant F019099.

Research of B. Solomyak was supported in part by NSF grant #DMS 9800786, the Fulbright Foundation, and the Institute of Mathematics at The Hebrew University of Jerusalem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peres, Y., Simon, K. & Solomyak, B. Self-similar sets of zero Hausdorff measure and positive packing measure. Isr. J. Math. 117, 353–379 (2000). https://doi.org/10.1007/BF02773577

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02773577

Keywords

Navigation