Skip to main content
Log in

The effect of prey movement on attack behavior and patch residence decision rules of wolf spiders (Araneae: Lycosidae)

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

We used a video imaging technique to test the effects of prey movement on attack behavior and foraging patch residence time decision rules of wolf spiders. TwelveSchizocosa ocreata (Hentz) (Lycosidae) were tested in an artificial foraging patch stimulus chamber consisting of a microscreen television displaying a computer digitized, animated image of a cricket. Four prey movement treatments were used: (1) a blank screen, (2) a stationary cricket control, (3) a cricket moving for 1 min, and (4) a cricket moving for 10 min. Spiders stayed significantly longer in treatments with higher cricket activity. Spiders also stayed longer when they attacked the stimulus than when they did not. The distribution of patch residence times of spiders indicates a decision rule based on a fixed probability of leaving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abrahams, M. V. (1986). Patch choice under perceptual constraints: A cause for departures from an ideal free distribution.Behav. Ecol. Sociobiol. 19: 409–415.

    Article  Google Scholar 

  • Bell, W. J. (1991).Searching Behaviour: The Behavioural Ecology of Finding Resources, Champman and Hall, London.

    Google Scholar 

  • Charnov, E. L. (1976). Optimal foraging, the marginal value theorem.Theor. Pop. Biol. 9: 129–136.

    Article  CAS  Google Scholar 

  • Clark, D. L., and Uetz, G. W. (1990). Video image recognition by the jumping spider,Maevia inclemens (Araneae: Salticidae).Anim. Behav. 40: 884–890.

    Article  Google Scholar 

  • Clark, D. L., and Uetz, G. W. (1992). Morph-independent mate selection in a dimorphic jumping spider: Demonstration of movement bias in female choice using video-controlled courtship behaviour.Anim. Behav. 43: 247–254.

    Article  Google Scholar 

  • Clark, D. L., and Uetz, G. W. (1994). Signal efficacy and the evolution of male dimorphism in the jumping spider,Maevia inclemens.Proc. Natl. Acad. Sci. 90: 11954–11957.

    Article  Google Scholar 

  • Ford, M. J. (1978). Locomotory activity and the predation strategy of the wolf-spiderPardosa amentata (Clerck) (Lycosidae).Anim. Behav. 35: 453–461.

    Google Scholar 

  • Giulio, L. (1979). Optomotor responses of the jumping spiderHeliophanus muscorum Walck. (Araneae Salticidae) elicited by turning spiral.Monitore Zool. Ital. (N.S.) 13: 143–157.

    Google Scholar 

  • Heinrich, B. (1983). Do bumblebees forage optimally, and does it matter?Am. Zool. 23: 273–281.

    Google Scholar 

  • Hodge, M. A. (1987). Factors influencing web site residence time of the rob weaing spider,Micrathena gracilis.Psyche 94: 363–371.

    Article  Google Scholar 

  • Janetos, A. C. (1982a). Foraging tactics of two guilds of web-spinning spiders.Behav. Ecol. Sociobiol. 10: 19–27.

    Article  Google Scholar 

  • Janetos, A. C. (1982b). Active foragers vs. sit-and-wait predators: a simple model.J. Theor. Biol. 95: 381–385.

    Article  Google Scholar 

  • Janetos, A. C., and Cole, B. J. (1981). Imperfectly optimal animals.Behav. Ecol. Sociobiol. 9: 203–209.

    Article  Google Scholar 

  • Kareiva, P., Morse, D. H., and Eccleston, J. (1989). Stochastic prey arrivals and crab spider giving-up times: Simulations of spider performance using two simple “rules of thumb.”Oecologia 78: 547–549.

    Article  Google Scholar 

  • Kennedy, M., and Gray, R. D. (1993). Can ecological theory predict the distribution of foraging animals? A critical analysis of experiments on the ideal free distribution.Oikos 68: 158–166.

    Article  Google Scholar 

  • Land, M. F. (1972). Stepping movements made by jumping spiders during mediated by the lateral eyes.J. Exp. Biol. 57: 15–40.

    PubMed  CAS  Google Scholar 

  • Land, M. F. (1971). Orientation by jumping spiders in the absence of visual feedback.J. Exp. Biol. 54: 119–139.

    PubMed  CAS  Google Scholar 

  • McClintock, W. J., and Uetz, G. W. (1996). Female choice and preexisting bias: Visual cues during courtship in twoSchizocosa wolf spiders (Araneae: Lycosidae).Anim. Behav. 52: 167–181.

    Article  Google Scholar 

  • Morse, D. H. (1993). Choosing hunting sites with little information: Patch-choice responses of crab spiders to distant cues.Behav. Ecol. 4: 61–65.

    Article  Google Scholar 

  • Nishimura, K. (1994). Decision making of a sit-and-wait forager in an uncertain environment: Learning and memory load.Am. Nat. 143: 656–676.

    Article  Google Scholar 

  • Olive, C. W. (1982). Behavioral response of a sit-and-wait predator to spatial variation in foraging gain.Ecology 63: 912–920.

    Article  Google Scholar 

  • Pasquet, A., Ridwan, A., and LeBorgne, R. (1994). Presence of potential prey affects web-building in an orb-weaving spiderZygiella x-notata.Anim. Behav. 47: 477–480.

    Article  Google Scholar 

  • Persons, M. H., and Uetz, G. W. (1996a). The influence of sensory information on patch residence time in wolf spiders (Araneae: Lycosidae).Anim. Behav. 51: 1285–1293.

    Article  Google Scholar 

  • Persons, M. H., and Uetz, G. W. (1996b). Wolf spiders vary patch residence time in the presence of chemical cues from prey (Araneae: Lycosidae).J. Arachnol 24: 76–79.

    Google Scholar 

  • Persons, M. H., and Uetz, G. W. (1997). Residence time decisions in wolf spiders: is perceiving prey as important as eating prey?Ecoscience 4: 1–5.

    Google Scholar 

  • Pyke, G. H. (1984). Optimal foraging theory: A critical review.Annu. Rev. Ecol. Syst. 15: 523–575.

    Article  Google Scholar 

  • Pyke, G. H., Pulliam, H. R., and Charnov, E. L. (1977). Optimal foraging: a selective review of theory and tests.Q. Rev. Biol. 52: 137–154.

    Article  Google Scholar 

  • Riechert, S. E. (1985). Decisions in multiple goal contexts: Habitat selection of the spider,Agelenopsis aperta (Gertsch).Z. Tierpsychol. 70: 53–69.

    Google Scholar 

  • Rovner, J. S. (1991). Evidence for idiothetically controlled turns and extraocular photoreception in lycosid spiders.J. Arachnol. 19: 169–173.

    Google Scholar 

  • Rovner, J. S. (1993). Visually mediated responses in the lycosid spiderRabidosa rabida: The roles of different pairs of eyes.Mem. Queensland Mus. 33: 635–638.

    Google Scholar 

  • Schoener, T. W. (1971). Theory of feeding strategies.Annu. Rev. Ecol. Syst. 2: 369–404.

    Article  Google Scholar 

  • Seyfarth, E., Hergenroder, R., Ebbes, H., and Barth, F. G. (1982). Idiothetic orientation of a wandering spider: Compensation of detours and estimates of goal distance.Behav. Ecol. Sociobiol. 11: 139–148.

    Article  Google Scholar 

  • Stephens, D. W., and Krebs, J. R. (1986).Foraging Theory, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Suter, R. B., and Sanchez, E. (1991). Evolutionary stability of stochastic decision making in spiders: Results of a simulation.Anim. Behav. 42: 921–929.

    Article  Google Scholar 

  • Suter, R. B., and Walberer, L. (1989). Enigmatic cohabitation in bowl and doily spiders,Frontinella pyramitela (Araneae, Linyphiidae).Anim. Behav. 37: 402–409.

    Article  Google Scholar 

  • Uetz, G. W. (1992). Foraging strategies of spiders.Trends Ecol. Evol. 7: 155–159.

    Article  Google Scholar 

  • Valone, T. J. (1991). Bayesian and prescient assessment: foraging with pre-harvest information.Anim. Behav. 41: 569–577.

    Article  Google Scholar 

  • Vollrath, R. (1985). Web spider’s dilemma: A risky move or site dependent growth.Oecologia 68: 69–72.

    Article  Google Scholar 

  • Wise, D. H. (1993).Spiders in Ecological Webs, Cambridge University Press, Cambridge.

    Google Scholar 

  • Zar, J. H. (1984).Biostatistical Analysis, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persons, M.H., Uetz, G.W. The effect of prey movement on attack behavior and patch residence decision rules of wolf spiders (Araneae: Lycosidae). J Insect Behav 10, 737–752 (1997). https://doi.org/10.1007/BF02765390

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02765390

Key words

Navigation