Skip to main content
Log in

Mixing properties of Markov operators and ergodic transformations, and ergodicity of cartesian products

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 1980

Abstract

LetT be a Markov operator onL 1(X, Σ,m) withT*=P. We connect properties ofP with properties of all productsP ×Q, forQ in a certain class: (a) (Weak mixing theorem)P is ergodic and has no unimodular eigenvalues ≠ 1 ⇔ for everyQ ergodic with finite invariant measureP ×Q is ergodic ⇔ for everyuL 1 with∝ udm=0 and everyfL we haveN −1Σ ≠1/N n |<u, P nf>|→0. (b) For everyuL 1 with∝ udm=0 we have ‖T nu‖1 → 0 ⇔ for every ergodicQ, P ×Q is ergodic. (c)P has a finite invariant measure equivalent tom ⇔ for every conservativeQ, P ×Q is conservative. The recent notion of mild mixing is also treated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aaronson,On the ergodic theory of infinite measure spaces, Ph.D. thesis, The Hebrew University of Jerusalem, 1977 (in Hebrew).

  2. A. Beck,Eigenoperators of ergodic transformations, Trans. Amer. Math. Soc.94 (1960), 118–129.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Brunel,New conditions for existence of invariant measures in ergodic theory, Springer Lecture Notes in Math.160, 1970, pp. 7–17.

    MathSciNet  Google Scholar 

  4. J. L. Doob,Stochastic Processes, J. Wiley, New York, 1953.

    MATH  Google Scholar 

  5. N. Dunford and J. T. Schwartz,Linear Operators, Part I, Interscience, New York, 1958; Part II, 1963.

    Google Scholar 

  6. E. Flytzanis,Ergodicity of the Cartesian product, Trans. Amer. Math. Soc.186 (1973), 171–176.

    Article  MathSciNet  Google Scholar 

  7. S. Foguel,The Ergodic Theory of Markov Processes, Van-Nostrand Reinhold, New York, 1969.

    MATH  Google Scholar 

  8. H. Furstenberg and B. Weiss,The finite multipliers of infinite ergodic transformations, to appear.

  9. P. R. Halmos,Lectures on Ergodic Theory, Chelsea, 1956.

  10. T. E. Harris and H. Robbins,Ergodic theory of Markov chains with infinite invariant measures, Proc. Nat. Acad. Sci. U.S.A.39 (1953), 860–864.

    Article  MathSciNet  Google Scholar 

  11. S. Horowitz,Markov processes on a locally compact space, Israel J. Math.7 (1969), 311–324.

    MATH  MathSciNet  Google Scholar 

  12. B. Jamison and S. Orey,Markov chains recurrent in the sense of Harris, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete8 (1967), 41–48.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Jones and M. Lin,Ergodic theorems of weak mixing type, Proc. Amer. Math. Soc.57 (1976), 50–52.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Kakutani and W. Parry,Infinite measure preserving transformations with “mixing”, Bull. Amer. Math. Soc.69 (1963), 752–756.

    MATH  MathSciNet  Google Scholar 

  15. T. Kaluza,Über die Koefizienter reziproker potenzreihen, Math. Z.28 (1928), 161–170.

    Article  MathSciNet  MATH  Google Scholar 

  16. U. Krengel and L. Sucheston,On mixing in infinite measure spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete13 (1969), 150–164.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Lin,Mixing for Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete19 (1971), 231–242.

    Article  MathSciNet  Google Scholar 

  18. M. Lin,Mixing of Cartesian squares of positive operators, Israel J. Math.11 (1972), 349–354.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Lin,Strong ratio limit theorems for Markov processes, Ann. Math. Statist.43 (1972), 569–579.

    MathSciNet  MATH  Google Scholar 

  20. S. Orey,Strong ratio limit property, Bull. Amer. Math. Soc.67 (1961), 571–579.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Shlomo Horowitz

An erratum to this article is available at http://dx.doi.org/10.1007/BF02788933.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aaronson, J., Lin, M. & Weiss, B. Mixing properties of Markov operators and ergodic transformations, and ergodicity of cartesian products. Israel J. Math. 33, 198–224 (1979). https://doi.org/10.1007/BF02762161

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02762161

Keywords

Navigation