Skip to main content
Log in

Advances in the molecular characterization of tryptophan hydroxylase

  • Minireview
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The neurotransmitter serotonin has been implicated in numerous physiological functions and pathophysiological disorders. The hydroxylation of the aromatic amino acid tryptophan is rate-limiting in the synthesis of serotonin. Tryptophan hydroxylase (TPH), as the rate-limiting enzyme, determines the concentrations of serotonin in vivo. Relative serotonin concentrations are clearly important in neural transmission, but serotonin has also been reported to function as a local antioxidant. Identification of the mechanisms regulating TPH activity has been hindered by its low levels in tissues and the instability of the enzyme. Several TPH expression systems have been developed to circumvent these problems. In addition, eukaryotic expressions systems are currently being developed and represent a new avenue of research for identifying TPH regulatory mechanisms. Recombinant DNA technology has enabled the synthesis of TPH deletions, chimeras, and point mutations that have served as tools for identifying structural and functional domains within TPH. Notably, the experiments have proven long-held hypotheses that TPH is organized intoN-terminal regulatory and C-terminal catalytic domains, that serine-58 is a site for PKA-mediated phosphorylation, and that a C-terminal leucine zipper is involved in formation of the tetrameric holoenzyme. Several new findings have also emerged regarding regulation of TPH activity by posttranslational phosphorylation, kinetic inhibition, and covalent modification. Inhibition of TPH byl-DOPA may have implications for depression in Parkinson’s disease (PD) patients. In addition, TPH inactivation by nitric oxide may be involved in amphetamine-induced toxicity. These regulatory concepts, in conjunction with new systems for studying TPH activity, are the focus of this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abate C. and Joh T. H. (1991) Limited proteolysis of rat brain tyrosine hydroxylase defines an N-terminal region required for regulation of cofactor binding and directing substrate specificity.J. Mol. Neurosci. 2, 203–215.

    PubMed  CAS  Google Scholar 

  • Abate C., Smith J. A., and Joh T. H. (1988) Characterization of the catalytic domain of bovine adrenal tyrosine hydroxylase.Biochem. Biophys. Res. Commun. 151, 1446–1453.

    Article  PubMed  CAS  Google Scholar 

  • Agid Y., Cervera P., Hirsch E., Javoy-Agid F., Lehericy S., Raismann R., et al. (1989) Biochemistry of Parkinson’s disease 28 years later: a critical review.Mov. Disord. 4, 126–144.

    Article  Google Scholar 

  • Banik U., Wang G., Wanger P. D., and Kaufman S. (1997) Interaction of phosphorylated tryptophan hydroxylase with 14-3-3 protein.J. Biol. Chem. 42, 26,219–26,225.

    Google Scholar 

  • Barasch J. M., Tamir H., Nunez E. A., and Gershon M. D. (1987) Serotonin-storing secretory granules from thyroid parafollicular cells.J. Neurosci. 7, 4017–4033.

    PubMed  CAS  Google Scholar 

  • Bartholini G., Da Prada M., and Pletscher A. (1968) Decrease of cerebral 5-hydroxytryptamine by 3,4-dihyrdophenylalanine after inhibition of extracerebral decarboxylase.J. Pharm. Pharmacol. 20, 228–229.

    PubMed  CAS  Google Scholar 

  • Boadle-Biber M. C. (1993) Regulation of serotonin synthesis.Prog. Biophys. Mol. Biol. 60, 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Bonnefoy E., Ferrara P., Rohrer H., Gros F., and Thibault J. (1988) Role of the N-terminus of rat pheochromocytoma tyrosine hydroxylase in the regulation of the enzyme’s activity.Eur. J. Biochem. 174, 685–690.

    Article  PubMed  CAS  Google Scholar 

  • Boston P. F., Jackson P., Kynoch P. A., and Thompson R. J. (1982) Purification and immunohistochemical localisation of human brain 14-3-3.J. Neurochem. 38, 1466–1474.

    Article  PubMed  CAS  Google Scholar 

  • Boularand S., Darmon M. C., Ganem Y., Launay J. M., and Mallet J. (1990) Complete coding sequence of human tryptophan hydroxylase.Nucleic Acids Res. 18, 4257.

    Article  PubMed  CAS  Google Scholar 

  • Campbell D. G., Hardie D. G., and Vulliet P. R. (1986) Identification of the four phosphorylation sites in the N-terminal region of tyrosine hydroxylase.J. Biol. Chem. 261, 10,489–10,492.

    CAS  Google Scholar 

  • Cash C. D. P., Vayer P., Mandel P., and Maitre M. (1985) Tryptophan 5-hydroxylase: rapid purification from whole brain and production of specific antiserum.Eur. J. Biochem. 149, 239–245.

    Article  PubMed  CAS  Google Scholar 

  • Champier J., Claustrat B., Besancon R., Eymin C., Killer C., Jouvet A., et al. (1997) Evidence for tryptophan hydroxylase and hydroxy-indole-o-methyl-transferase mRNAs in human blood platelets.Life Sci. 60, 2191–2197.

    Article  PubMed  CAS  Google Scholar 

  • Chong S. R., Mersha F. B., Comb D. G., Scott M. E., Landry D., Vence L. M., et al. (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element.Gene 192, 271–281.

    Article  PubMed  CAS  Google Scholar 

  • Clark M. S., Lanigan T. M., Page N. M., and Russo A. F. (1995a) Induction of a serotonergic and neuronal phenotype in thyroid C cells.J. Neurosci. 15, 6167–6178.

    PubMed  CAS  Google Scholar 

  • Clark M. S., Lanigan T. M., and Russo A. F. (1995b) Serotonergic neuronal properties in C cell lines.Methods: A Companion to Methods Enzymol. 7, 253–261.

    Article  CAS  Google Scholar 

  • Cool D. R., Leibach F. H., Bhalla V. K., Mahesh V. B., and Ganapathy V. (1991) Expression and cyclic AMP-dependent regulation of a high affinity serotonin transporter in the human placental choriocarcinoma cell line (JAR).J. Biol. Chem. 266, 15,750–15,757.

    CAS  Google Scholar 

  • Cummings J. L. (1992) Depression and Parkinson’s disease: a review.Am. J. Psych. 149, 443,444.

    Google Scholar 

  • Darmon M. C., Guibert B., Leviel V., Ehret M., Maitre M., and Mallet J. (1988) Sequence of two mRNAs encoding active rat tryptophan hydroxylase.J. Neurochem. 51, 312–316.

    Article  PubMed  CAS  Google Scholar 

  • Daubner S. C., and Fitzpatrick P. F. (1993) Lysine241 of tyrosine hydroxylase is not required for binding of tetrahydrobiopterin substrate.Arch. Biochem. Biophys. 302, 455–460.

    Article  PubMed  CAS  Google Scholar 

  • Daubner S. C., Loshe D. L., and Fitzpatrick P. F. (1993) Expression and characterization of catalytic and regulatory domains of rat tyrosine hydroxylase.Protein. Sci. 2, 1452–1460.

    PubMed  CAS  Google Scholar 

  • Daubner S. C. and Piper M. M. (1995) Deletion mutants of tyrosine hydroxylase identify a region critical for heparin binding.Protein Sci. 4, 538–541.

    Article  PubMed  CAS  Google Scholar 

  • Daubner S. C., Hillas P. J., and Fitzpatrick P. F. (1997) Characterization of chimeric pterin-dependent hydroxylases: contributions of the regulatory domains of tyrosine and phenylalanine hydroxylase to substrate specificity.Biochemistry 36, 11,574–11,582.

    Article  CAS  Google Scholar 

  • Delort J., Dumas J. B., Darmon M. C., and Mallet J. (1989) An efficient strategy for cloning 5′ extremities of rare transcripts permits isolation of multiple 5′-untranslated regions of rat tryptophan hydroxylase mRNA.Nucleic Acids Res. 17, 6439–6448.

    Article  PubMed  CAS  Google Scholar 

  • Dickson P. W., Jennings I. G., and Cotton R. G. H. (1994) Delineation of the catalytic core of phenylalanine hydroxylase and identification of glutamate 286 as a critical residue for pterin function.J. Biol. Chem. 269, 20,369–20,375.

    CAS  Google Scholar 

  • Doskeland A. P., Martinez A., Knappskog P. M., and Flatmark T. (1996) Phosphorylation of recombinant human phenylalanine hydroxylase: effect on catalytic activity, substrate activation and protection against non-specific cleavage of the fusion protein by restriction proteases.Biochem. J. 313, 409–414.

    Google Scholar 

  • D’Sa C., Arthur R., Jennings I., Cotton R. G. H., and Kuhn D. M. (1996a) Tryptophan hydroxylase: purification by affinity chromatography on calmodulin-sepharose.J. Neurosci. Methods 69, 149–153.

    Article  Google Scholar 

  • D’Sa C. M., Arthur R. E. Jr., States C., and Kuhn D. M. (1996b) Tryptophan hydroxylase: cloning and expression of the rat brain enzyme in mammalian cells.J. Neurochem. 67, 900–906.

    Article  Google Scholar 

  • D’Sa C. M., Arthur R. E. Jr., and Kuhn D. M. (1996c) Expression and deletion mutagenesis of tryptophan hydroxylase fusion proteins: Delineation of the enzyme catalytic core.J. Neurochem. 67, 917–926.

    Article  Google Scholar 

  • Eaton M. J., Staley J. K., Globus M. Y., and Whittemore S. R. (1995) Developmental regulation of early serotonergic neuronal differentiation: the role of brain derived neurotrophic factor and membrane depolarization.Dev. Biol. 170, 169–182.

    Article  PubMed  CAS  Google Scholar 

  • Eaton M. J. and Whittemore S. R. (1995) Adrenocorticotropic hormone activation of adenylate cyclase in the raphe neurons: multiple regulatory pathways control serotonergic neuronal differentiation.J. Neurobiol. 28, 465–81.

    Article  PubMed  CAS  Google Scholar 

  • Ehret M., Cash C. D., Hamon M., and Maitre M. (1989) Partial demonstration of the phosphorylation of rat brain tryptophan hydroxylase by Ca2+/calmodulin-dependent protein kinase.J. Neurochem. 52, 1886–1891.

    Article  PubMed  CAS  Google Scholar 

  • Ehret M., Pevet P., and Maitre M. (1991) Tryptophan hydroxylase synthesis is induced by 3′, 5′-cyclic monophosphate during circadian rhythm in the rat pineal gland.J. Neurochem. 57, 1516–1521.

    Article  PubMed  CAS  Google Scholar 

  • Elkins K. W., Gibb J. W., Hanson G. R., Wilkins D. G., and Johnson M. (1993) Effects of nimodipine on the amphetamine- and methamphetamine-induced decrease in tryptophan hydroxylase activity.Eur. J. Pharm. 250, 395–402.

    Article  CAS  Google Scholar 

  • Erlandsen H., Martinez A., Knappskog P. M., Haavik J., Hough E., and Flatmark T. (1997a) Crystallization and preliminary diffraction analysis of a truncated homodimer of human phenylalanine hydroxylase.FEBS Lett. 406, 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Erlandsen H., Fusetti F., Martinez A., Hough E., Flatmark T., and Stevens R. C. (1997b) Crystal structure of the catalytic domain of human phenylalanine hydroxylase reveals the structural basis for phenylketonuria.Nature Struct. Biol. 4, 995–1000.

    Article  PubMed  CAS  Google Scholar 

  • Fisher D. B. and Kaufman S. (1972) The stimulation of rat liver phenylalanine hydroxylase by phospholipids.J. Biol. Chem. 247, 2250–2252.

    PubMed  CAS  Google Scholar 

  • Florez J. C. and Takahashi J. S. (1996) Regulation of tryptophan hydroxylase by cyclic AMP, calcium, norepinephrine and light in cultured pineal cells.J. Neurochem. 67, 242–250.

    Article  Google Scholar 

  • Friedman P. A., Kappelman A. H., and Kaufman S. (1972) Partial purification and characterization of tryptophan hydroxylase from rabbit hindbrain.J. Biol. Chem. 247, 4165–4173.

    PubMed  CAS  Google Scholar 

  • Fujisawa H. and Nakata H. (1987) Tryptophan 5-monooxygenase from mouse mastocytoma clone P815.Methods Enzymol. 142, 93–96.

    PubMed  CAS  Google Scholar 

  • Furukawa Y., Ikuta N., Omata S., Yamauchi T., Isobe T., and Ichimura T. (1993) Demonstration of the phosphorylation-dependent interaction of tryptophan hydroxylase with the 14-3-3 protein.Biochem. Biophys. Res. Commun. 194, 144–149.

    Article  PubMed  CAS  Google Scholar 

  • Gershon M. D. (1981) The enteric nervous system.Annu. Rev. Neurosci. 4, 227–272.

    Article  PubMed  CAS  Google Scholar 

  • Gershon M. D. and Tamir H. (1997) Regulation of the environment of the interior of serotonin-storing vesicles.Handbook Exp. Pharmacol. 129, 153–174.

    CAS  Google Scholar 

  • Gibb J. W., Johnson M., and Hanson G. R. (1990) Neurochemical basis of neurotoxicity.Neurotoxicology 11, 317–321.

    PubMed  CAS  Google Scholar 

  • Gibb J. W., Johnson M., Stone D. M., and Hanson G. R. (1993) Mechanisms mediating biogenic amine deficits induced by amphetamine and its congeners.NIDA Res. Monogr. 136, 226–236.

    PubMed  CAS  Google Scholar 

  • Goodwill K. E., Sabatier C., Marks C., Eaag R., Fitzpatrick P. F., and Stevens R. C. (1997) Crystal structure of tyrosine hydroxylase at 2.3 Å and its implications for inherited neurodegenerative diseases.Nature Struct. Biol. 4, 578–585.

    Article  PubMed  CAS  Google Scholar 

  • Grenett H. E., Ledley F. D., Reed L. L., and Woo S. L. C. (1987) Full-length cDNA for rabbit tryptophan hydroxylase: Functional domains and evolution of aromatic amino acid hydroxylases.Proc. Natl. Acad. Sci. USA 84, 5530–5534.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa H., Kojima M., Oguro K., and Nakanishi N. (1995) Rapid turnover of tryptophan hydroxylase in serotonin producing cells: demonstration of ATP-dependent proteolytic degradation.FEBS Lett. 368, 151–154.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa H., Kojima M., Iida Y., Oguro K., and Nakanishi N. (1996) Stimulation of tryptophan hydroxylase production in a serotonin-producing cell line (RBL2H3) by intracellular calcium mobilizing reagents.FEBS Lett. 392, 289–292.

    Article  Google Scholar 

  • Huether G. and Schuff-Werner P. (1996) Platelet serotonin acts a locally releasable antioxidant, inRecent Advances in Tryptophan Research (Filippini P. L., et al. eds.), Plenum, New York.

    Google Scholar 

  • Hufton S. E., Jennings I. G., and Cotton R. G. H. (1995) Structure and function of the aromatic amino acids hydroxylases.J. Biochem. 311, 353–366.

    CAS  Google Scholar 

  • Ichimura T., Isobe T., Okuyama T., Yamauchi T., and Fujisawa H. (1987) Brain 14-3-3 protein is an activator protein that activates tryptophan 5-mono-oxygenase and tyrosine 3-monooxygenase in the presence of Ca2+, calmodulin-dependent protein kinase II.FEBS Lett. 219, 79–82.

    Article  PubMed  CAS  Google Scholar 

  • Ichimura T., Isobe T., Okuyama T., Takahashi N., Araki K., Kuwano R., et al. (1988) Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases.Proc. Natl. Acad. Sci. USA 85, 7084–7088.

    Article  PubMed  CAS  Google Scholar 

  • Ichimura T., Uchiyama J., Kunihiro O., Ito M., Horigome T., Omata S., et al. (1995) Identification of the site of interaction of the 14-3-3 protein with phosphorylated tryptophan hydroxylase.J. Biol. Chem. 270, 28,515–28,518.

    CAS  Google Scholar 

  • Ishida Y., Hashiguchi H., Todaka K., Kuwahara I., and Mitsuyama Y. (1996) Dopaminergic transplants alter in vivo activity of tryptophan hydroxylase in the striatum in a rat model of Parkinson’s disease.Neurosci. Lett. 210, 75–78.

    Article  Google Scholar 

  • Isobe T., Ichimura T., Sunaya T., Okuyama T., Takahashi N., Kuwano R., et al. (1991) Distinct forms of the protein kinase-dependent activator of tyrosine and tryptophan hydroxylases.J. Mol. Biol. 217, 125–132.

    Article  PubMed  CAS  Google Scholar 

  • Iwaki M., Phillips R. S., and Kaufman S. (1986) Proteolytic modification of the amino-terminal and carboxyl-terminal regions of rat hepatic phenylalanine hydroxylase.J. Biol. Chem. 261, 2051–2056.

    PubMed  CAS  Google Scholar 

  • Jequier E., Robinson D. S., Lovenberg W., and Sjoerdsma A. (1969) Further studies on tryptophan hydroxylase in rat brainstem and beef pineal.Biochem. Pharmacol. 18, 1071–1081.

    Article  PubMed  CAS  Google Scholar 

  • Joh T. H., Shikimi T., Pickel V. M., and Reis D. J. (1975) Brain tryptophan hydroxylase: Purification of, production of antibodies to, and cellular and ultrastructural localization in serotonergic neurons of rat midbrain.Proc. Natl. Acad. Sci. USA 72, 3575–3579.

    Article  PubMed  CAS  Google Scholar 

  • Joh T. H., Hwang O., and Abate C. (1986) Phenylalanine hydroxylase, tyrosine hydroxylase and tryptophan hydroxylase, inNeuromethods Series 1: Neurochemistry, Neurotransmitter Enzymes (Boulton A. A., Baker G. B., and Yu P. H., eds.), Humana, Clifton, NJ, pp. 1–32.

    Google Scholar 

  • Johansen P. A., Wolf W. A., and Kuhn D. M. (1991) Inhibition of tryptophan hydroxylase by benserazide and other catechols.Biochem. Pharmacol. 41, 625–628.

    Article  PubMed  CAS  Google Scholar 

  • Johansen P. A., Jennings I., Cotton R. G. H., and Kuhn D. M. (1995) Tryptophan hydroxylase is phosphorylated by protein kinase A.J. Neurochem. 65, 882–888.

    Article  PubMed  CAS  Google Scholar 

  • Johansen P. A., Jennings I., Cotton R. G. H., and Kuhn D. M. (1996) Phosphorylation and activation of tryptophan hydroxylase by exogenous protein kinase A.J. Neurochem. 66, 817–823.

    Article  Google Scholar 

  • Kaufman S. (1987) Aromatic amino acid hydroxylases.Enzymes 18, 217–282.

    CAS  Google Scholar 

  • Kaufman S. (1993) The phenylalanine hydroxylating system.Adv. Enzy. Related Areas Mol. Biol. 67, 77–264.

    Article  CAS  Google Scholar 

  • Kim K. S., Wessel T. C., Stone D. M., Carver C. H., Joh T. H., and Park D. H. (1991) Molecular cloning and characterization of cDNA encoding tryptophan hydroxylase from rat central serotonergic neurons.Mol. Brain Res. 9, 277–283.

    Article  PubMed  CAS  Google Scholar 

  • Knapp S. and Mandell A. J. (1983) Lithium and chlorimiprammine differentially alter the stability properties of tryptophan hydroxylase as seen in allosteric and scattering kinetics.Psych. Res. 8, 311–323.

    Article  CAS  Google Scholar 

  • Komatsu K. and Nakamura W. (1989) Combined effect of cis-DDP (II), OK-432 and systemic hyperthermia in ascites tumor in mice.J. Jpn. Soc. Cancer Ther. 24, 626–637.

    CAS  Google Scholar 

  • Kostic V. S., Djricic B. M., Covickovic-Sternic N., Bumbasirevic L., Nikoliv M., and Mrsulja B. B. (1987) Depression and Parkinson’s disease: possible role of serotonergic mechanisms.J. Neurol. 234, 94–96.

    Article  PubMed  CAS  Google Scholar 

  • Kowlessur D., Yang X. J., and Kaufman S. (1995) Further studies of the role of ser-16 in the regulation of the activity of phenylalanine hydroxylase.Proc. Natl. Acad. Sci. USA 92, 4743–4747.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn D. M. and Arthur R. E. Jr. (1996) Inactivation of brain tryptophan hydroxylase by nitric oxide.J. Neurochem. 67, 1072–1077.

    Article  Google Scholar 

  • Kuhn D. M. and Arthur R. E. Jr. (1997a) Inactivation of tryptophan hydroxylase by nitric oxide: enhancement by tetrahydrobiopterin.J. Neurochem. 68, 1495–1502.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn D. M. and Arthur R. E. Jr. (1997b) Molecular mechanism of the inactivation ot tryptophan hydroxylase by nitric oxide: attack on critical sulfhydryls that spare the enzyme iron center.J. Neurosci. 17, 7245–7251.

    PubMed  CAS  Google Scholar 

  • Kuhn D. M., Rosenberg R. C., and Lovenberg W. (1979) Determination of some molecular parameters of tryptophan hydroxylase from rat midbrain and murine mast cell.J. Neurochem. 33, 15–21.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn D. M., Ruskin B., and Lovenberg W. (1980) Tryptophan hydroxylase: Role of oxygen, iron, sulfhydryl groups as determinants of stability and catalytic activity.J. Biol. Chem. 255, 4137–4143.

    PubMed  CAS  Google Scholar 

  • Kuhn D. M., Arthur R. A. Jr., and States J. C. (1997) Phosphorylation and activation of brain tryptophan hydroxylase: Identification of serine-58 as a substrate site for protein kinase A.J. Neurochem. 68, 2220–2223.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn W., Muller T., Gerlach M., Sofic E., Fuchs G., Heye N., et al. (1996) Depression in Parkinson’s disease: biogenic amines in CSF of ‘de novo’ patients.J. Neural. Transm. 103, 1441–1445.

    Article  Google Scholar 

  • Kumer S. C., Mockus S. M., Rucker P. J., and Vrana K. E. (1997) Amino terminal deletion analysis of tryptophan hydroxylase: PKA phosphorylation occurs at serine-58.J. Neurochem. 69, 1738–1745.

    Article  PubMed  CAS  Google Scholar 

  • Ledley F. D., DiLella A. G., Kwok S. C. M., and Woo S. L. C. (1985) Homology between phenylalanine and tyrosine hydroxylase reveals common structural and functional domains.Biochemistry 24, 3389–3394.

    Article  PubMed  CAS  Google Scholar 

  • Leong S. S., Horoszewicz J. S., Shimaoka K., Friedman M., Kawinski E., Song M. J., et al. (1981) A new cell line for the study of human medullary thyroid carcinoma, inAdvances in Thyroid Neoplasia (Andreoli M., Manaco F., and Robbins J., eds.), Field Educational Italia, Rome, pp. 95–108.

    Google Scholar 

  • Liu X. and Vrana K. E. (1991) Leucine zippers and coiled-coils in the aromatic amino acid hydroxylases.Neurochem. Int. 18, 27–31.

    Article  CAS  PubMed  Google Scholar 

  • Lohse D. L. and Fitzpatrick P. F. (1993) Identification of the intersubunit binding region in rat tyrosine hydroxylase.Biochem. Biophys. Res. Commun. 197, 1543–1548.

    Article  PubMed  CAS  Google Scholar 

  • Lovenberg W., Jequier E., and Sjoerdsma A. (1967) Tryptophan hydroxylation: measurement in pineal gland, brainstem and carcinoid tumor.Science 155, 217–219.

    Article  PubMed  CAS  Google Scholar 

  • Makita Y., Okuno S., and Fujisawa H. (1990) Involvement of activator protein in the activation of tryptophan hydroxylase by cAMP-dependent protein kinase.FEBS Lett. 268, 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Mann J. J., Malone K. M., Nielsen D. A., Goldman D., Erdos J., and Gelernter J. (1997) Possible association of a polymorphism of the tryptophan hydroxylase gene with suicidal behavior in depressed patients.Am. J. Psychiatry 154, 1451–1453.

    PubMed  CAS  Google Scholar 

  • Marston F. A. O. (1986) The purification of eukaryotic polypeptides synthesized inEscherichia coli.Biochem. J. 240, 1–12.

    PubMed  CAS  Google Scholar 

  • Maruyama W., Naoi M., Takahashi A., Watanabe H., Konagaya Y., Mokuno K., et al. (1992) The mechanism of perturbation in monoamine metabolism byl-DOPA therapy: in vivo and in vitro studies.J. Neural. Transm. 90, 183–197.

    Article  CAS  Google Scholar 

  • Mayeux R., Stern Y., Cote L., and Williams J. B. W. (1984) Altered serotonin metabolism in depressed patients with Parkinson’s’s disease.Neurology 34, 642–646.

    PubMed  CAS  Google Scholar 

  • Mayeux R., Stern Y., Williams J. B. W., Cote L., Frantz A., and Dyrenfurth I. (1986) Clinical and biochemical features of depression in Parkinson’s disease.Am. J. Psychiatry 143, 756–759.

    PubMed  CAS  Google Scholar 

  • Mayeux R., Stern Y., Sano M., Williams J. B. W., and Cote L. J. (1988) The relationship of serotonin to depression in Parkinson’s’s disease.Mov. Disord. 3, 1813,1814.

    Article  Google Scholar 

  • Meek J. L. and Neff N. H. (1972) Tryptophan 5-hydroxylase: approximation of half-life and rate of axonal transport.J. Neurochem. 19, 1519–1525.

    Article  PubMed  CAS  Google Scholar 

  • Miguez J. M., Simonneaux V., and Pevet P. (1997) The role of the intracellular and extracellular serotonin in the regulation of melatonin production in rat pinealocytes.J. Pineal Res. 23, 63–71.

    Article  PubMed  CAS  Google Scholar 

  • Mitraki A., Fane B., Haase-Pettingell C., Sturtevant J., and King J. (1991) Global suppression of protein folding defects and inclusion body formation.Science 253, 54–58.

    Article  PubMed  CAS  Google Scholar 

  • Mockus S. M., Kumer S. C., and Vrana K. E. (1997a) A chimeric tyrosine/tryptophan hydroxylase: The tyrosine hydroxylase regulatory domain serves to stabilize enzyme activity.J. Mol. Neurosci. 9, 35–48.

    PubMed  CAS  Google Scholar 

  • Mockus S. M., Kumer S. C., and Vrana K. E. (1997b) Carboxyl terminal deletion analysis of tryptophan hydroxylase.Biochim. Biophys. Acta 1342, 132–140.

    PubMed  CAS  Google Scholar 

  • Mockus S. M., Yohrling G. Y., and Vrana K. E. (1998) Tyrosine hydroxylase and tryptophan hydroxylase do not form heterotetramers.J. Mol. Neurosci. 10, 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Moan G. R., Daubner S. C., and Fitzpatrick P. F. (1998)J. Biol. Chem. 273, 12,259–12,266.

    Google Scholar 

  • Murray A. J., Lewis S. J., Barclay A. N., and Brady R. L. (1995) One sequence, two folds: a mestastable structure of CD2.Proc. Natl. Acad. Sci. USA 92, 7337–7341.

    Article  PubMed  CAS  Google Scholar 

  • Muszynski M., Birnbaum R. S., and Roos B. (1983) Glucocorticoids stimulate the production of preprocalcitonin-derived secretory peptides by a rat medullary thyroid carcinoma cell line.J. Biol. Chem. 258, 11,678–11,683.

    CAS  Google Scholar 

  • Nakata H. and Fujisawa H. (1982a) Purification and properties of tryptophan 5-monoxygenase from rat brain-stem.Eur. J. Biochem. 122, 41–47.

    Article  PubMed  CAS  Google Scholar 

  • Nakata H. and Fujisawa H. (1982b) Tryptophan 5-monoxygenase from mouse mastocytoma.Eur. J. Biochem. 124, 595–601.

    Article  PubMed  CAS  Google Scholar 

  • Naoi M., Maruyama W., Takahashi T., Ota M., and Parvez H. (1994) Inhibition of tryptophan hydroxylase by dopamine and the precursor amino acids.Biochem. Pharmacol. 48, 207–212.

    Article  PubMed  CAS  Google Scholar 

  • Neckameyer W. S. and White K. (1992) A single locus encodes both phenylalanine hydroxylase and tryptophan hydroxylase activities inDrosophila.J. Biol. Chem. 267, 4199–4206.

    PubMed  CAS  Google Scholar 

  • Nielsen D. A., Dean M., and Goldman D. (1992) Genetic mapping of the human tryptophan hydroxylase gene on chromosome 11, using an intronic conformational polymorphism.Am. J. Hum. Genet. 51, 1366–1371.

    PubMed  CAS  Google Scholar 

  • Nielsen D. A., Goldman D., Virkkunen M., Tokola R., Rawlings R., and Linnoila M. (1994) Suicidality and 5-hydroxyindoleacetic acid concentration associated with a tryptophan hydroxylase polymorphism.Arch. Gen. Psychiatry 51, 34–38.

    PubMed  CAS  Google Scholar 

  • Nukiwa T., Tohyama C., Okita T., and Ichiyama A. (1982) Purification and some properties of bovine pineal tryptophan 5-monooxygenase.Biochem. Biophys. Res. Commun. 60, 1029–1035.

    Article  Google Scholar 

  • Nunez E. A. and Gershon M. D. (1972) Synthesis and storage of serotonin by parafollicular (C) cells of the thyroid gland of active, prehibernating and hibernating bats.Endocrinology 90, 1008–1024.

    Article  PubMed  CAS  Google Scholar 

  • Osborne N. N. (1980) In vitro experiments on the metabolism, uptake and release of 5-hydroxytryptamine in bovine retina.Brain Res. 184, 283–297.

    Article  PubMed  CAS  Google Scholar 

  • Ota A., Yoshida S., and Nagatsu T. (1995) Deletion mutagenesis of human tyrosine hydroxylase type 1 regulatory domain.Biochem. Biophys. Res. Commun. 213, 1099–1106.

    Article  PubMed  CAS  Google Scholar 

  • Ota A., Yoshida S., and Nagatsu T. (1996) Regulation of N-terminus-deleted human tyrosine hydroxylase type 1 by end products of catecholamine biosynthetic pathway.J. Neural Transm. 103, 1415–1428.

    Article  Google Scholar 

  • Park D. H., Stone D. M., Kim K. S., and Joh T. H. (1994) Characterization of recombinant mouse tryptophan hydroxylase expressed inEscherichia coli.Mol. Cell. Neurosci. 5, 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Perler F. B., Davis E. O., Dean G. E., Gimble F. S., Jack W. E., Neff N., et al. (1994) Protein splicing elements: inteins and exteins—A definition of terms and recommended nomenclature.Nucleic Acids. Res. 22, 1125–1127.

    Article  PubMed  CAS  Google Scholar 

  • Quinsey N. S., Lenaghan C. M., and Dickson P. W. (1996) Identification of Gln313 and Pro327 as residues critical for substrate inhibition in tyrosine hydroxylase.J. Neurochem. 66, 908–914.

    Article  Google Scholar 

  • Ribeiro P., Wang Y., Citron B. A., and Kaufman S. (1993) Deletion mutagenesis of rat PC12 tyrosine hydroxylase regulatory and catalytic domains.J. Mol. Neurosci. 4, 125–139.

    PubMed  CAS  Google Scholar 

  • Richarme G. (1982) Associative properties of theEscherichia coli galactose binding protein and maltose binding protein.Biochem. Biophys. Res. Commun. 105, 476–481.

    Article  PubMed  CAS  Google Scholar 

  • Richarme G. (1983) Associative properties of theEscherichia coli galactose-binding protein and maltose-binding protein.Biochim. Biophys. Acta 748, 99–108.

    PubMed  CAS  Google Scholar 

  • Rudge J. S., Eaton M. J., Mather P., Lindsay R. M., and Whittemore S. R. (1996) CNTF induces raphe neuronal precursors to switch from a serotonergic to a cholinergic phenotype in vitro.Mol. Cell. Neurosci. 7, 204–221.

    Article  Google Scholar 

  • Russo A. F., Clark M. S., and Durham P. L. (1996) Thyroid parafollicular cells: an accessible model for the study of serotonergic neurons.Mol. Neurobiol. 13, 257–275.

    Article  Google Scholar 

  • Sabban E. L. (1997) Control of tyrosine hydroxylase gene expression in chromaffin and PC12 cells.Semin. Cell. Dev. Biol. 8, 101–111.

    Article  PubMed  CAS  Google Scholar 

  • Schindler R. (1958) The conversion of14C-labelled tryptophan to 5-hydroxytryptamine by neoplastic mast cells.Biochem. Pharmacol. 1, 323–332.

    Article  Google Scholar 

  • Seiden L. S. and Sabol K. E. (1996) Methamphetamine and methylenedioxy-methamphetamine neurotoxicity: possible mechanisms of cell destruction.NIDA Res. Monogr. 163, 251–276.

    Google Scholar 

  • Simantov R. and Tauber M. (1997) The abused drug MDMA (ecstasy) induces programmed death of human serotonergic cells.FASEB J. 11, 141–146.

    PubMed  CAS  Google Scholar 

  • Sitaram B. R. and Lees G. (1978) Diurnal rhythm and turnover of tryptophan hydroxylase in the pineal gland of the rat.J. Neurochem. 21, 1021–1026.

    Article  Google Scholar 

  • Sjoerdsma A., Waalkes T. P., and Weissbach H. (1957) Serotonin and histamine in mast cells.Science 125, 1202.

    Article  PubMed  CAS  Google Scholar 

  • Son J. H., Chung J. H., Huh S. O., Park D. H., Peng C., Rosenblum M. G., et al. (1996) Immortalization of neuroendocrine pinealocytes from transgenic mice by targeted tumorigenesis using the tryptophan hydroxylase promoter.Mol. Brain Res. 37, 32–40.

    Article  Google Scholar 

  • Steele T. D., McCann U. D., and Ricuarte G. A. (1994) 3,4-methylenedioxy-methamphetamine (MDMA, “ecstasy”): pharmacology and toxicology in animals and humans.Addiction 89, 539–551.

    Article  PubMed  CAS  Google Scholar 

  • Stoll J., Kozak C. A., and Goldman D. (1990) Characterization and chromosomal mapping of a cDNA encoding tryptophan hydroxylase from a mouse mastocytoma cell line.Genomics 7, 88–96.

    Article  PubMed  CAS  Google Scholar 

  • Stone D. M., Hanson G. R., and Gibb J. W. (1989a) In vitro reactivation of rat cortical tryptophan hydroxylase following in vivo inactivation by methylenedioxymethamphetamine.J. Neurochem. 53, 572–581.

    Article  PubMed  CAS  Google Scholar 

  • Stone D. M., Johnson M., Hanson G. R., and Gibb J. W. (1989b) Acute inactivation of tryptophan hydroxylase by amphetamine analogs involves the oxidation of sulfhydryl sites.Eur. J. Pharmacol. 172, 93–97.

    Article  PubMed  CAS  Google Scholar 

  • Tamir H., Liu K., Payette R. F., Hsiung S., Adlersberg M., Nunez E. A., et al. (1989) Human medullary thyroid carcinoma: characterization of the serotonergic and neuronal properties of a neuroectodermally derived cell line.J. Neurosci. 9, 1199–1212.

    PubMed  CAS  Google Scholar 

  • Tamir H., Hsiung S., Adlersberg M., Nunez E., and Gershon M. D. (1990) Multiple signals leading to the secretion of 5-hydroxytryptamine by MTC cells, a neuroectodermally derived cell line.J. Neurosci. 10, 3743–3753.

    PubMed  CAS  Google Scholar 

  • Thomas K. B., Tigges M., and Iuvone P. M. (1993) Melatonin synthesis and circadian tryptophan hydroxylase activity in chicken retina following destruction of serotonin immunoreactive amacrine and bipolar cells by kainic acid.Brain Res. 601, 303–307.

    Article  PubMed  CAS  Google Scholar 

  • Tipper J. P., Citron B. A., Ribeiro P., and Kaufman S. (1994) Cloning and expression of rabbit human brain tryptophan hydroxylase cDNA inEscherichia coli.Arch. Biochem. Biophys. 315, 445–453.

    Article  PubMed  CAS  Google Scholar 

  • Tong J. H. and Kaufman S. (1975) Tryptophan hydroxylase: purification and some properties of the enzyme from rabbit hindbrain.J. Biol. Chem. 250, 4152–4158.

    PubMed  CAS  Google Scholar 

  • Vitto A. and Mandell A. J. (1981) Stability properties of activated tryptophan hydroxylase from rat midbrain.J. Neurochem. 37, 601–607.

    Article  PubMed  CAS  Google Scholar 

  • Vrana K. E., Rucker P. J., and Kumer S. C. (1994a) Recombinant rabbit tryptophan hydroxylase is a substrate for cAMP-dependent protein kinase.Life Sci. 55, 1045–1052.

    Article  PubMed  CAS  Google Scholar 

  • Vrana K. E., Walker S. J., Rucker P., and Liu X. (1994b) A carboxyl terminal leucine zipper is required for tyrosine hydroxylase tetramer formation.J. Neurochem. 63, 2014–2020.

    Article  PubMed  CAS  Google Scholar 

  • Walker J., Crowley P., Moreman A. D., and Barrett J. (1993) Biochemical properties of cloned glutathione S-transferases fromSchistosoma mansoni andSchistosoma japonicum.Mol. Biochem. Parasitol. 61, 255–264.

    Article  PubMed  CAS  Google Scholar 

  • Walker S. J., Liu X., Roskoski R. Jr., and Vrana K. E. (1994) Catalytic core of rat tyrosine hydroxylase: Terminal deletion analysis of bacterially-expressed enzyme.Biochim. Biophys. Acta 1206, 113–119.

    PubMed  CAS  Google Scholar 

  • White L. A., Eaton M. J., Castro M. C., Klose K. J., Globus M. Y. T., Shaw G., et al. (1994) Distinct regulatory pathways control neurofilament expression and neurotransmitter synthesis in immortalized serotonergic neurons.J. Neurosci. 14, 6744–6753.

    PubMed  CAS  Google Scholar 

  • Widmer F., Mutus B., RamaMurthy J., Snieckus V. A., and Viswanatha T. (1975) Partial purification of rabbit hind brain tryptophan hydroxylase by affinity chromatography.Life Sci. 17, 1297–1302.

    Article  PubMed  CAS  Google Scholar 

  • Wu J., Filer D., Friedhoff A. J., and Goldstein M. (1992) Site-directed mutagenesis of tyrosine hydroxylase. Role of serine-40 in catalysis.J. Biol. Chem. 267, 25,754–25,758.

    CAS  Google Scholar 

  • Yamauchi T., Nakata H., and Fujisawa H. (1981) A new activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+-, calmodulin-dependent protein kinase.J. Biol. Chem. 256, 5404–5409.

    PubMed  CAS  Google Scholar 

  • Yang X. J. and Kaufman S. (1994) High-level expression and deletion mutagenesis of human tryptophan hydroxylase.Proc. Natl. Acad. Sci. USA 91, 6659–6663.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mockus, S.M., Vrana, K.E. Advances in the molecular characterization of tryptophan hydroxylase. J Mol Neurosci 10, 163–179 (1998). https://doi.org/10.1007/BF02761772

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02761772

Index Entries

Navigation