Skip to main content
Log in

Ionotropic glutamate receptors

Their possible role in the expression of hippocampal synaptic plasticity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In the brain, most fast excitatory synaptic transmission is mediated through L-glutamate acting on postsynaptic ionotropic glutamate receptors. These receptors are of two kinds—the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate (non-NMDA) and theN-methyl-D-aspartate (NMDA) receptors, which are thought to be colocalized onto the same postsynaptic elements. This excitatory transmission can be modulated both upward and downward, long-term potentiation (LTP) and long-term depression (LTD), respectively. Whether the expression of LTP/LTD is pre-or postsynaptically located (or both) remains an enigma. This article will focus on what postsynaptic modifications of the ionotropic glutamate receptors may possibly underly long-term potentiation/depression. It will discuss the character of LTP/LTD with respect to the temporal characteristics and to the type of changes that appears in the non-NMDA and NMDA receptor-mediated synaptic currents, and what constraints these findings put on the possible expression mechanism(s) for LTP/LTD. It will be submitted that if a modification of the glutamate receptors does underly LTP/LTD, an increase/decrease in the number of functional receptors is the most plausible alternative. This change in receptor number will have to include a coordinated change of both the non-NMDA and the NMDA receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mayer M. L. and Westbrook G. L. (1987) The physiology of excitatory amino acids in the vertebrate central nervous system.Prog. Neurobiol. 28, 197–276.

    Article  PubMed  CAS  Google Scholar 

  2. Li Y., Erzurumlu R. S., Chen C., Jhaveri S., and Tonegawa S. (1994) Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDAR 1 knockout mice.Cell 76, 427–437.

    Article  PubMed  CAS  Google Scholar 

  3. Cramer K. S. and Sur M. (1995) Activity-dependent remodeling of connections in the mammalian visual system.Curr. Opin. Neurobiol. 5, 106–111.

    Article  PubMed  CAS  Google Scholar 

  4. Bliss T. V. P. and Collingridge G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus.Nature 361, 31–39.

    Article  PubMed  CAS  Google Scholar 

  5. Zieglgänsberger W. and Tölle T. R. (1993) The pharmacology of pain signalling.Curr. Opin. Neurobiol. 3, 611–618.

    Article  PubMed  Google Scholar 

  6. Davis M., Rainnie D., and Cassell M. (1994) Neurotransmission in rat amygdala related to fear and anxiety.Trends Neurosci. 17, 208–214.

    Article  PubMed  CAS  Google Scholar 

  7. Choi D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system.Neuron 1, 623–634.

    Article  PubMed  CAS  Google Scholar 

  8. Szatkowski M. and Attwell D. (1994) Triggering and execution of neuronal death in brain ischemia: two phases of glutamate release by different mechanisms.Trends Neurosci. 9, 359–365.

    Article  Google Scholar 

  9. Schoepp D. D. and Conn P. J. (1993) Metabotropic glutamate receptors in brain function and pathology.Trends Pharmacol. Sci. 14, 13–20.

    Article  PubMed  CAS  Google Scholar 

  10. Gasic G. P. and Hollmann M. (1992) Molecular neurobiology of glutamate receptors.Ann. Rev. Physiol. 54, 507–536.

    Article  CAS  Google Scholar 

  11. Wisden W. and Seeburg P. H. (1993) Mammalian ionotropic glutamate receptors.Curr. Opin. Neurobiol. 3, 291–298.

    Article  PubMed  CAS  Google Scholar 

  12. Hollmann M. and Heinemann S. (1994) Cloned glutamate receptors.Ann. Rev. Neurosci. 17, 31–108.

    Article  PubMed  CAS  Google Scholar 

  13. Wigström H. and Gustafsson B. (1985) On long-lasting potentiation in the hippocampus: a proposed mechanism for its dependence on coincident pre- and postsynaptic activity.Acta Physiol. Scan. 123, 519–522.

    Article  Google Scholar 

  14. Bekkers J. M. and Stevens C. F. (1989) NMDA and non-NMDA receptors are colocalized at individual excitatory synapses in cultured rat hippocampus.Nature 341, 230–233.

    Article  PubMed  CAS  Google Scholar 

  15. McBain C. and Dingledine R. (1992) Dualcomponent miniature excitatory synaptic currents in rat hippocampal CA3 neurons.J. Neurophysiol. 68, 16–27.

    PubMed  CAS  Google Scholar 

  16. Hablitz J. J. and Langmoen I. A. (1986) N-methyl-D-aspartate receptor antagonists reduce synaptic excitation in the hippocampus.J. Neurosci. 6, 102–106.

    PubMed  CAS  Google Scholar 

  17. Collingridge G. L., Herron C. E., and Lester R. A. J. (1988) Synaptic activation of N-methyl-D-aspartate receptors in the Schaffer collateral-commissural pathway of the rat hippocampus.J. Physiol. (Lond.) 399, 283–300.

    CAS  Google Scholar 

  18. Mayer M. L., Westbrook G. L., and Guthrie P. B. (1984) Voltage-dependent block by Mg of NMDA responses in spinal cord neurons.Nature 305, 719–721.

    Google Scholar 

  19. Nowak L., Bregestovski P., Ascher P., Herbert A., and Prochiantz A. (1984) Magnesium gates glutamate-activated channels in mouse central neurons.Nature 307, 462–465.

    Article  PubMed  CAS  Google Scholar 

  20. Tsumoto T. (1992) Long-term potentiation and long-term depression in the neocortex.Prog. Neurobiol. 39, 209–228.

    Article  PubMed  CAS  Google Scholar 

  21. Dudek S. M. and Bear M. F. (1993) Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus.J. Neurosci. 13, 2910–2918.

    PubMed  CAS  Google Scholar 

  22. Tsumoto T. (1993) Long-term depression in cerebral cortex: a possible substrate of “forgetting” that should not be forgotten.Neurosci. Res. 16, 263–270.

    Article  PubMed  CAS  Google Scholar 

  23. Linden D. J. (1994) Long-term synaptic depression in the mammalian brain.Neuron 12, 457–472.

    Article  PubMed  CAS  Google Scholar 

  24. Gustafsson B. and Wigström H. (1988) Physiological mechanisms underlying long-term potentiation.Trends neurosci. 11, 156–162.

    Article  PubMed  CAS  Google Scholar 

  25. Malenka R. C., Kauer J. A., Perkel D. J., and Nicoll R. A. (1989) The impact of postsynaptic calcium on synaptic transmission—its role in long-term potentiation.Trends Neurosci. 12, 444–450.

    Article  PubMed  CAS  Google Scholar 

  26. Bear M. F. and Malenka R. C. (1994) Synaptic plasticity: LTP and LTD.Curr. Opin. Neurobiol. 4, 389–399.

    Article  PubMed  CAS  Google Scholar 

  27. Kauer J. A., Malenka R. C., and Nicoll R. A. (1988) A persistent postsynaptic modification mediates long-term potentiation in hippocampus.Neuron 1, 911–917.

    Article  PubMed  CAS  Google Scholar 

  28. Muller D., Joly M., and Lynch G. (1988) Contributions of quisqalate and NMDA receptors to the induction and expression of LTP.Science 242, 1694–1697.

    Article  PubMed  CAS  Google Scholar 

  29. Lin J.-H., Way L.-L., and Gean P.-W. (1993) Pairing of pre- and postsynaptic activities in hippocampal CA1 neurons induces long-term modifications of NMDA receptor-mediated synaptic potential.Brain Res. 603, 117–120.

    Article  PubMed  CAS  Google Scholar 

  30. Dolphin A. C., Errington M. L., and Bliss T. V. P. (1982) Long-term potentiation in the perforant path in vivo is associated with increased glutamate release.Nature 297, 496–498.

    Article  PubMed  CAS  Google Scholar 

  31. Bekkers J. M. and Stevens C. F. (1990) Presynaptic mechanism for long-term potentiation in the hippocampus.Nature 346, 724–729.

    Article  PubMed  CAS  Google Scholar 

  32. Malinow R. and Tsien R. W. (1990) Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices.Nature 346, 177–180.

    Article  PubMed  CAS  Google Scholar 

  33. Malgaroli A. and Tsien R. W. (1992) Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons.Nature 357, 134–139.

    Article  PubMed  CAS  Google Scholar 

  34. Stevens C. F. and Wang Y. (1994) Changes in reliability of synaptic function as a mechanism for plasticity.Nature 371, 704–707.

    Article  PubMed  CAS  Google Scholar 

  35. Foster T. C. and McNaughton B. (1991) Long-term enhancement of CA1 synaptic transmission is due to increased quantal size, not quantal content.Hippocampus 1, 79–91.

    Article  PubMed  CAS  Google Scholar 

  36. Davies S. N., Lester R. A. J., Reymann K. G., and Collingridge G. L. (1989) Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation.Nature 338, 500–503.

    Article  PubMed  CAS  Google Scholar 

  37. Manabe T. and Nicoll R. A. (1994) Long-term potentiation: evidence against an increase in transmitter release probability in the CA1 region of the hippocampus.Science 265, 1888–1892.

    Article  PubMed  CAS  Google Scholar 

  38. Perkel D. J. and Nicoll R. A. (1993) Evidence for an all-or-none regulation of transmitter release: implications for long-term potentiation.J. Physiol. (Lond.) 471, 481–500.

    CAS  Google Scholar 

  39. Manabe T., Renner P., and Nicoll R. A. (1992) Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents.Nature 355, 50–55.

    Article  PubMed  CAS  Google Scholar 

  40. Kullmann D. M. (1994) Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: implications for long-term potentiation.Neuron 12, 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  41. Larkman A., Hannay T., Stratford K., and Jack J. (1992) Presynaptic release probability influences the locus of long-term potentiation.Nature 360, 70–73.

    Article  PubMed  CAS  Google Scholar 

  42. Liao D., Jones A., and Malinow R. (1992) Direct measurement of quantal changes underlying long-term potentiation in CA1 hippocampus.Neuron 9, 1089–1097.

    Article  PubMed  CAS  Google Scholar 

  43. Asztély F., Hanse E., Wigström H., and Gustafsson B. (1991) Synaptic potentiation in the hippocampal CA1 region induced by application of N-methyl-D-aspartate.Brain Res. 558, 153–156.

    Article  PubMed  Google Scholar 

  44. Hanse E. and Gustafsson B. (1994) TEA elicits two distinct potentiations of synaptic transmission in the CA1 region of the hippocampal slice.J. Neurosci. 14, 5028–5034.

    PubMed  CAS  Google Scholar 

  45. Huber K. M., Mauk M. D., and Kelly P. T. (1995) Distinct LTP induction mechanisms: contribution of NMDA receptors and voltage-dependent calcium channels.J. Neurophysiol. 73, 270–279.

    PubMed  CAS  Google Scholar 

  46. Zucker R. S. (1989) Short-term plasticity.Ann. Rev. Neurosci. 12, 13–31.

    Article  PubMed  CAS  Google Scholar 

  47. Teyler T. J., Goddard G. V., Lynch G., and Andersen P. (1982) Properties and mechanisms of LTP, inHippocampal Long-Term Potentiation: Mechanisms and Implications for Memory (Swanson L. W. Teyler T. J., and Thompson R. F., eds.), MIT Press, Cambridge, MA, pp. 644–680.

    Google Scholar 

  48. Lynch G., Kessler M., Arai A., and Larson J. (1990) The nature and cause of long-term potentiation.Prog. Brain. Res. 83, 233–250.

    Article  PubMed  CAS  Google Scholar 

  49. Gustafsson B., Asztély F., Hanse E., and Wigström H. (1989) Onset characteristics of long-term potentiation in the guinea pig hippocampal CA1 region in vitro.Eur. J. Neurosci. 1, 382–394.

    Article  PubMed  Google Scholar 

  50. Hanse E. and Gustafsson B. (1992) Postsynaptic, but not presynaptic, activity controls the early time course of long-term potentiation in the dentate gyrus.J. Neurosci. 12, 3226–3240.

    PubMed  CAS  Google Scholar 

  51. Asztély F., Xiao M.-Y., Wigström H., and Gustafsson B. (1994) Effect of adenosine-induced changes in presynaptic release probability on long-term potentiation in the hippocampal CA1 region.J. Neurosci. 14, 6707–6714.

    PubMed  Google Scholar 

  52. Malenka R. C. (1991) Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus.Neuron 6, 53–60.

    Article  PubMed  CAS  Google Scholar 

  53. Hanse E. and Gustafsson B. (1994) Onset and stabilization of NMDA receptor-dependent hippocampal long-term potentiation.Neurosci. Res. 20, 15–25.

    Article  PubMed  CAS  Google Scholar 

  54. Kennedy M. B. (1988) Synaptic memory molecules.Nature 335, 770–772.

    Article  PubMed  CAS  Google Scholar 

  55. Reymann K. G., Davies S. N., Matthies H., Kase H., and Collingridge G. L. (1990) Activation of a K-252b-sensitive protein kinase is necessary for a postsynaptic phase of long-term potentiation in area CA1 of rat hippocampus.Eur. J. Neurosci. 2, 481–486.

    Article  PubMed  Google Scholar 

  56. Malenka R., Lancaster B., and Zucker R. (1992) Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation.Neuron 9, 121–128.

    Article  PubMed  CAS  Google Scholar 

  57. Steward O. (1993) Synapse growth as a mechanism for activity-dependent synaptic modification, inMemory Concepts—1993. Basic and Clinical Aspects (Andersen P., Hvalby Ø., Paulsen O., and Hökfelt B., eds.), Elsevier, Amsterdam, pp. 281–301.

    Google Scholar 

  58. Sommer B., Keinänen K., Verdoorn T. A., Eisden W., Burnashev N., Herb A., Köhler M., Tagaki T., Sakmann B., and Seeburg P. H. (1990) Flip and flop. A cell-specific functional switch in glutamate-operated channels of the CNS.Science 249, 1580–1585.

    Article  PubMed  CAS  Google Scholar 

  59. Abraham W. C., Gustafsson B., and Wigström H. (1987) Long-term potentiation involves enhanced synaptic excitation relative to synaptic inhibition in guinea-pig hippocampus.J. Physiol. (Lond.) 394, 367–380.

    CAS  Google Scholar 

  60. Hess G. and Gustafsson B. (1990) Changes in field excitatory postsynaptic potential shape induced by tetanization in the CA1 region of the guinea-pig hippocampal slice.Neurosci. 37, 61–69.

    Article  CAS  Google Scholar 

  61. Isaacson J. S. and Nicoll R. A. (1991) Aniracetam reduces glutamate receptor desensitization and slows the decay of fast excitatory synaptic currents in the hippocampus.Proc. Natl. Acad. Sci. USA 88, 10,936–10,940.

    Article  CAS  Google Scholar 

  62. Ambros-Ingerson J., Larson J., Xiao P., and Lynch G. (1991) LTP changes the waveform of synaptic responses.Synapse 9, 314–316.

    Article  PubMed  CAS  Google Scholar 

  63. Asztély F. and Gustafsson B. (1994) Dissociation between long-term potentiation and associated changes in field EPSP waveform in the hippocampal CA1 region: an in vitro study using guinea pig brain slices.Hippocampus 4, 148–156.

    Article  PubMed  Google Scholar 

  64. Aniksztejn L. and Ben-Ari Y. (1991) Novel form of long-term potentiation produced by a K channel blocker in the hippocampus.Nature 349, 67–69.

    Article  PubMed  CAS  Google Scholar 

  65. Kullmann D. M., Perkel D. J., Manabe T., and Nicoll R. A. (1992) Ca entry via postsynaptic voltage-sensitive Ca channels can transiently potentiate excitatory synaptic transmission in the hippocampus.Neuron 9, 1175–1183.

    Article  PubMed  CAS  Google Scholar 

  66. Huang Y.-Y. and Malenka R. C. (1993) Examination of TEA-induced synaptic enhancement in area CA1 of the hippocampus: the role of voltage-dependent Ca channels in the induction of LTP.J. Neurosci. 13, 568–576.

    PubMed  CAS  Google Scholar 

  67. Xiao Y.-Y., Karpefors M., Gustafsson B., and Wigström H. (1995) On the linkage between AMPA and NMDA receptor-mediated EPSPs in homosynaptic long-term depression in the hippocampal region of young rats.J. Neurosci. 15, 4496–4500.

    PubMed  CAS  Google Scholar 

  68. Muller D. and Lynch G. (1988) Long-term potentiation differentially affects two components of synaptic responses in hippocampus.Proc. Natl. Acad. Sci. USA 85, 9346–9350.

    Article  PubMed  CAS  Google Scholar 

  69. Asztély F., Wigström H., and Gustafsson B. (1992) The relative contribution of NMDA receptor channenls in the expression of long-term potentiation in the CA1 region of the hippocampus.Eur. J. Neurosci. 4, 342–345.

    Article  Google Scholar 

  70. Garaschuk O. and Kovalchuk Y. (1992) Adenoside-dependent enhancement by methylxantines of excitatory synaptic transmission in hippocampus of rats.Neurosci. Lett. 135, 10–12.

    Article  PubMed  CAS  Google Scholar 

  71. Bashir Z. I., Alford S., Davies S. N., Randall A. D., and Collingridge G. L. (1991) Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus.Nature 349, 156–158.

    Article  PubMed  CAS  Google Scholar 

  72. Xie X., Berger T. W., and Barrionuevo G. (1992) Isolated NMDA receptor-mediated synaptic responses express both LTP and LTD.J. Neurophysiol. 67, 1009–1013.

    PubMed  CAS  Google Scholar 

  73. Clark K. A. and Collingridge G. L. (1995) Synaptic potentiation of dual-component excitatory postsynaptic currents in the rat hippocampus.J. Physiol. (Lond.) 482, 39–52.

    CAS  Google Scholar 

  74. Xiao Y.-Y., Wigström, H., and Gustafsson B. (1994) Long-term depression in the hippocampal CA1 region is associated with equal changes in AMPA and NMDA receptor-mediated synaptic potentials.Eur. J. Neurosci. 6, 1055–1057.

    Article  PubMed  CAS  Google Scholar 

  75. Kombian S. B. and Malenka R. C. (1994) Simultaneous LTP of non-NMDA-and LTD of NMDA-receptor-mediated responses in the nucleus accumbens.Nature 368, 242–246.

    Article  PubMed  CAS  Google Scholar 

  76. Crépel V., Hammond C., Chinestra P., Diabira D., and Ben-Ari Y. (1993) A selective LTP of NMDA receptor-mediated currents induced by anoxia in CA1 hippocampal neurons.J. Neurophysiol. 70, 2045–2055.

    PubMed  Google Scholar 

  77. Hammond C., Crépel H., Gozlan H., and Ben-Ari Y. (1994) Anoxic LTP sheds light on the multiple facets of NMDA receptors.Trends Neurosci. 17, 497–503.

    Article  PubMed  CAS  Google Scholar 

  78. Gozlan H., Diabira D., Chinestra P., and Ben-Ari Y. (1994) Anoxic LTP is mediated by the redox modulatory site of the NMDA receptor.J. Neurophysiol. 72, 3017–3022.

    PubMed  CAS  Google Scholar 

  79. Scatton B. (1993) The NMDA receptor complex.Fund. Clin. Pharmacol. 7, 389–400.

    Article  CAS  Google Scholar 

  80. Swope S. L., Moss S. J., Blackstone C. D., and Huganir R. L. (1992) Phosphorylation of ligand-gated ion channels: a possible mode of synaptic plasticity.FASEB J. 6, 2514–2523.

    PubMed  CAS  Google Scholar 

  81. Raymond L. A., Blackstone C. D., and Huganir R. L. (1993) Phosphorylation of amino acid neurotransmitter receptors in synaptic plasticity.Trends Neurosci. 16, 147–153.

    Article  PubMed  CAS  Google Scholar 

  82. Malinow R., Madison D. V., and Tsien R. W. (1988) Persistent protein kinase activity underlying long-term potentiation.Nature 335, 820–824.

    Article  PubMed  CAS  Google Scholar 

  83. Wang J.-H. and Feng D.-P. (1992) Postsynaptic protein kinase C essential to induction and maintenance of long-term potentiation.Proc. Natl. Acad. Sci. USA 439, 2576–2580.

    Article  Google Scholar 

  84. Mulkey R. M., Herron C. E., and Malenka R. C. (1993) An essential role for protein phosphatases in hippocampal long-term depression.Science 261, 1051–1055.

    Article  PubMed  CAS  Google Scholar 

  85. Muller D., Buchs P. A., Dunant Y., and Lynch G. (1990) Protein kinase C activity is not responsible for the expression of long-term potentiation in hippocampus.Proc. Natl. Acad. Sci. USA 87, 4073–4077.

    Article  PubMed  CAS  Google Scholar 

  86. Perkel D. J. and Nicoll R. A. (1991) The role of protein kinase activity in long-term potentiation, inLong-Term Potentiation: A Debate of Current Issues (Baudry M. and Davis J. L., eds.), MIT Press, Cambridge, MA, pp. 143–154.

    Google Scholar 

  87. Tang C.-M., Shi Q.-Y., Katchman A., and Lynch G. (1991) Modulation of the time course of fast EPSCs and glutamate chanenl kinetics by aniracetam.Science 254, 288–290.

    Article  PubMed  CAS  Google Scholar 

  88. Staubli U., Kessler M., and Lynch G. (1990) Aniracetam has proportionally smaller effects on synapses expressing long-term potentiation: evidence that receptor changes subserve LTP.Psychobiology 18, 377–381.

    CAS  Google Scholar 

  89. Xiao P., Staubli U., Kessler M., and Lynch G. (1991) Selective effects of aniracetam across receptor types and forms of synaptic facilitation in hippocampus.Hippocampus 1, 373–380.

    Article  PubMed  CAS  Google Scholar 

  90. Wang L.-Y., Salter M. W., and MacDonald J. F. (1991) Regulation of kainate receptors by cAMP-dependent protein kinase and phosphatases.Science 253, 1132–1135.

    Article  PubMed  CAS  Google Scholar 

  91. Greengard P., Jen J., Nairn A. C., and Stevens C. F. (1991) Enhancement of the glutamate response by cAMP-dependent protein kinase in hippocampal neurons.Science 253, 1135–1138.

    Article  PubMed  CAS  Google Scholar 

  92. Wang L.-Y., Dudek E. M., Browning M. D., and MacDonald J. F. (1994) Modulation of AMPA/kainate receptors in cultured murine hippocampal neurones by protein kinase C.J. Physiol. (Lond.) 475, 431–437.

    CAS  Google Scholar 

  93. Asztély F., Hanse E., Wigström H., and Gustafsson B. (1992) Aniracetam-evoked potentiation does not interact with long-term potentiation in the CA1 region of hippocampus.Synapse 11, 342–345.

    Article  PubMed  Google Scholar 

  94. Cull-Candy S. G., Wyllie D. J. A., and Traynelis S. F. (1991) Excitatory amino acid-gated channel types in mammalian neurones and glia, inExcitatory Amino Acids and Synaptic Transmission (Wheal H. V. and Thomson A. M., eds.), Academic, London, pp. 69–91.

    Google Scholar 

  95. Wyllie D. J. A., Manabe T., and Nicoll R. A. (1994) A rise in postsynaptic Ca potentiates miniature excitatory postsynaptic currents and AMPA responses in hippocampal neurons.Neuron 12, 127–138.

    Article  PubMed  CAS  Google Scholar 

  96. Hestrin S. (1992) Activation and desensitization of glutamate-activated channels mediating fast excitatory synaptic currents in the visual cortex.Neuron 9, 991–999.

    Article  PubMed  CAS  Google Scholar 

  97. Jonas P., Major G., and Sakmann B. (1993) Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus.J. Physiol. (Lond.) 472, 615–663.

    CAS  Google Scholar 

  98. Kullmann D. M. (1993) Quantal variability of excitatory transmission in the hippocampus: implications for the opening probability of fast glutamate-gated channels.Proc. R. Soc. Lond. B 253, 107–116.

    Article  CAS  Google Scholar 

  99. Spruston N., Jonas P., and Sakmann B. (1995) Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons.J. Physiol. (Lond.) 482, 325–352.

    CAS  Google Scholar 

  100. Riveros N., Fiedler J., Lagos N., Munoz C., and Orrego F. (1986) Glutamate in rat brain cortex synaptic vesicles: influence of the vesicle isolation procedure.Brain Res. 386, 405–408.

    Article  PubMed  CAS  Google Scholar 

  101. Villanueva S., Fiedler J., and Orrego F. (1990) A study in rat brain cortex synaptic vesicles of endogenous ligands for N-methyl-D-aspartate receptors.Neurosci. 37, 23–30.

    Article  CAS  Google Scholar 

  102. Redman S. (1990) Quantal analysis of synaptic potentials in neurons of the central nervous system.Physiol. Rev. 70, 165–198.

    PubMed  CAS  Google Scholar 

  103. Edwards F. A., Konnerth A., and Sakmann B. (1990) Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study.J. Physiol. (Lond.) 430, 213–249.

    CAS  Google Scholar 

  104. Larkman A., Strafford K., and Jack J. (1991) Quantal analysis of excitatory synaptic action and depression in hippocampal slices.Nature 350, 344–347.

    Article  PubMed  CAS  Google Scholar 

  105. Harris K. M. and Landis D. M. D. (1986) Membrane structure of synaptic junction in area CA1 of the rat hippocampus.Neuroscience 19, 857–872.

    Article  PubMed  CAS  Google Scholar 

  106. Harris K. M. and Stevens J. K. (1989) Dendritic spines of CA1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical appearance.J. Neurosci. 9, 2982–2997.

    PubMed  CAS  Google Scholar 

  107. Margiotta J. F., Berg D. K., and Dionne V. E. (1987) Cyclic AMP regulates the proportion of functional acetylcholine receptors on chicken ciliary ganglion neurons.Proc. Natl. Acad. Sci. USA 84, 8155–8159.

    Article  PubMed  CAS  Google Scholar 

  108. Maren S., Tocco G., Standley S., Baudry M., and Thompson R. F. (1993) Postsynaptic factors in the expression of long-term potentiation (LTP): increased glutamate receptor binding following LTP induction in vivo.Proc. Natl. Acad. Sci. USA 90, 9654–9658.

    Article  PubMed  CAS  Google Scholar 

  109. Lynch G. and Baudry M. (1984) The biochemistry of memory: a new and specific hypothesis.Science 224, 1057–1063.

    Article  PubMed  CAS  Google Scholar 

  110. Kessler M., Arai A., Vanderklish P., and Lynch G. (1991) Failure to detect changes in AMPA receptor binding after long-term potentiation.Brain Res. 560, 337–341.

    Article  PubMed  CAS  Google Scholar 

  111. Malinow R. (1994) LTP: desperately seeking resolution.Science 266, 1195–1196.

    Article  PubMed  CAS  Google Scholar 

  112. Malinow R. (1991) Transmission between pairs of hippocampal slice neurons: quantal levels, oscillations, and LTP.Science 252, 722–724.

    Article  PubMed  CAS  Google Scholar 

  113. Kullmann D. M. and Nicoll R. (1992) Long-term potentiation is associated with increases in quantal content and quantal amplitude.Nature 357, 240–244.

    Article  PubMed  CAS  Google Scholar 

  114. Korn H. and Faber D. S. (1991) Quantal analysis and synaptic efficacy in the CNS.Trends Neurosci. 14, 439–445.

    Article  PubMed  CAS  Google Scholar 

  115. Lisman J. (1985) A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylation kinase.Proc. Natl. Acad. Sci. USA 82, 3055–3057.

    Article  PubMed  CAS  Google Scholar 

  116. Lisman J. and Goldring M. A. (1988) Feasibility of long-term storage of graded information by the Ca/calmodulin-dependent protein kinase molecules of the postsynaptic density.Proc. Natl. Acad. Sci. USA 85, 5320–5324.

    Article  PubMed  CAS  Google Scholar 

  117. Lisman J. (1994) The CaM kinase II hypothesis for the storage of synaptic memory.Trends Neurosci. 17, 406–412.

    Article  PubMed  CAS  Google Scholar 

  118. McGlade-McCulloh E., Yamamoto H., Tan S.-E., Brickey D. A., and Soderling T. R. (1993) Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II.Nature 362, 640–642.

    Article  PubMed  CAS  Google Scholar 

  119. Pettit D. L., Perlman S., and Malinow R. (1994) Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons.Science 266, 1881–1885.

    Article  PubMed  CAS  Google Scholar 

  120. Fukanaga K., Stoppini L., Miyamoto E., and Muller D. (1993) Long-term potentiation is associated with an increased activity of Ca/calmodulin-dependent protein kinase II.J. Biol. Chem. 268, 7863–7867.

    Google Scholar 

  121. Kennedy M. B., Bennet M. K., and Erondu N. E. (1983) Biochemical and immunochemical evidence that the “major postsynaptic density protein” is a subunit of a calmodulin-dependent protein kinase.Proc. Natl. Acad. Sci. USA 80, 7357–7361.

    Article  PubMed  CAS  Google Scholar 

  122. Kelly P. T., McGuiness T. L., and Greengard P. (1984) Evidence that the major postsynaptic protein is a component of a Ca/calmodulin-dependent protein kinase.Proc. Natl. Acad. Sci. USA 81, 945–949.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asztély, F., Gustafsson, B. Ionotropic glutamate receptors. Mol Neurobiol 12, 1–11 (1996). https://doi.org/10.1007/BF02740744

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02740744

Index Entries

Navigation