Skip to main content
Log in

Experimental study on the (μ 4He) +2S metastable system in helium gas

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

We report the results of an experimental investigation on the properties of the (μ 4He) +2S metastable muonic system, which was performed stopping negative muons in a pure helium target at pressures ranging from 10 to 50 atm, and observing the total yield and the differential time distribution of the X-rays released in delayed coincidence with the arrival of muons. At each pressureP, information was obtained on the following quantities:a) the total disappearance rate λ2S,tot(P) of the (μ 4He) +2S system,b) the disappearance rates λA(P) and λSt(itP) of the (μ 4He) +2S system for external Auger effect and Stark-mixing collisions,c) the fractionε 2S of muons stopped in helium which form the (μ 4He) +2S system. The results obtained on λ2S,tot(P) are in agreement with the results of a cascade calculation, which was performed requiring consistency with previous experimental results; the present measurements show that the variation ofε 2S (P) with pressure in the range (7÷50) atm is small. Good agreement was found between the values for the two-quantum decay rate λ2X of the (μ 4He) +2S system derived from the present data and the theoretical predictions. The results obtained on λ2S,tot(P), instead, are somewhat in conflict with the results of a recent calculation on λ2St(P). The possible reasons of such disagreement are discussed, referring to possible clustering effects of the helium atoms around the (μHe+ ion.

Riassunto

Presentiamo i risultati di un esperimento sulle proprietà del sistema muonico metastabile (μHe) +2S . L'esperimento è stato condotto fermando muoni negativi in un bersaglio di elio puro a pressioni comprese fra 10 e 50 atmosfere, ed osservando il numero totale e la distribuzione temporale dei raggi X emessi in coincidenza ritardata rispetto all'arrivo dei muoni. Ad ogni pressioneP, si sono ottenute informazioni sulle seguenti quantità:a) la velocità totale di decadimento λ2S,tot(P) del sistema (μHe) Emphasis>+2S ;b) le velocità di decadimento λA(P) e λ St (P) del sistema (μHe) +2S per effetto Auger esterno e per urti che provochino mescolamento Stark,c) la frazione ε2S(P) di muoni fermati in elio che formano il sistema (μHe) +2S . I risultati ottenuti suε 2S(P) sono in accordo con i risultati di un calcolo sul processo di cascata elettromagnetica, che è stato ottenuto richiedendo consistenza con risultati sperimentali precedenti. Le presenti misure mostrano che la variazione diε 2S(P) con la pressione nell'intervallo (7÷50) atm è piccola. Si è trovato un buon accordo fra i valori della velocità λ2X di decadimento del sistema (μHe) +2S mediante emissione di due fotoni derivati dai dati presenti e le previsioni teoriche. I risultati ottenuti per λ2S,tot(P), invece, sono in disaccordo con i risultati di una recente stima di λ2St (P). Le possibili regioni di tale disaccordo sono discusse, riferendole a possibili effetti diclustering degli atomi di elio attorno allo ione (μHe) +2S .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lipeles, R. Novick andM. Tolk:Phys. Rev. Lett.,15, 690 (1965); see alsoR. Novick:Two-photon decay of metastable helium ion, inPhysics of One and Two Electron Atoms (Amsterdam, 1968), p. 296.

    Article  ADS  Google Scholar 

  2. A. Placci, E. Polacco, E. Zavattini, K. Ziock, G. Carboni, U. Gastaldi, G. Gorini, G. Neri andG. Torelli:Nuovo Cimento,1 A, 445 (1971).

    Article  ADS  Google Scholar 

  3. C. S. Wu andL. Wilets:Ann. Rev. Nucl. Sci.,19, 527 (1969).

    Article  ADS  Google Scholar 

  4. G. Feinberg andM. Y. Chen:The 2S 1/2→1S 1/2+1 photon decay of muonic atoms and parity-violating neutral-current interactions, to be published inPhys. Rev.

  5. J. Bernabeu, T. E. O. Ericson andC. Jarlskog:Phys. Lett.,50 B, 467 (1974).

    Article  ADS  Google Scholar 

  6. M. A. Bouchiat andC. Bouchiat: to be published.

  7. A. Bertin, G. Carboni, A. Placci, E. Zavattini, U. Gastaldi, G. Gorini, G. Neri, O. Pitzurra, E. Polacco, G. Torelli, G. Stefanini, A. Vitale, J. Duclos andJ. Picard:Nuovo Cimento,23 B, 489 (1974).

    Article  ADS  Google Scholar 

  8. A. Di Giacomo:Nucl. Phys.,11 B, 411 (1969);E. Campani:Lett. Nuovo Cimento,6, 233 (1973).

    Article  ADS  Google Scholar 

  9. G. Carboni andO. Pitzurra:Nuovo Cimento,25 B, 367 (1975).

    Article  ADS  Google Scholar 

  10. M. Goeppert-Mayer:Ann. der. Phys.,9, 273 (1931).

    Article  ADS  Google Scholar 

  11. G. Breit andE. Teller:Astrophys. Journ.,91, 215 (1940).

    Article  ADS  Google Scholar 

  12. L. Spitzer andJ. L. Greenstein:Astrophys. Journ.,114, 407 (1951).

    Article  ADS  Google Scholar 

  13. J. Shapiro andG. Breit:Phys. Rev.,113, 179 (1959).

    Article  ADS  Google Scholar 

  14. G. Carboni, A. Placci, E. Zavattini, U. Gastaldi, G. Gorini, O. Pitzurra, G. Neri, E. Polacco, G. Torelli, J. Duclos, J. Picard andA. Vitale:Lett. Nuovo Cimento,6, 233 (1973).

    Article  Google Scholar 

  15. A. Bertin, G. Carboni, G. Gorini, O. Pitzurra, E. Polacco, G. Torelli, A. Vitale andE. Zavattini:Phys. Rev. Lett.,33, 253 (1974).

    Article  ADS  Google Scholar 

  16. P. K. Haff andT. A. Tombrello:Negative-muon capture in very light atoms, BAP-1, preprint (1974).

  17. See for instanceA. S. Wightmann:Phys. Rev.,77, 521 (1950).

    Article  ADS  Google Scholar 

  18. J. G. Fetkovich andE. G. Pewitt:Phys. Rev. Lett.,11, 290 (1963);M. M. Block, J. B. Kopelman andC. R. Sun:Phys. Rev.,140, B 143 (1965).

    Article  ADS  Google Scholar 

  19. O. A. Zaimidoroga, M. M. Kulyukin, R. M. Sulyaev, I. V. Falomkin, A. I. Filippov, V. M. Tsupo-Sitnikov andYu. A. Scherbakov:Žurn. Éksp. Teor. Fiz.,51, 1646 (1966) (English translation:Sov. Phys. JETP,24, 1111 (1967);O. A. Zaimidoroga, M. M. Kulyukin, R. M. Sulyaev, I. V. Falomkin, A. I. Filippov, V. M. Tsupo-Sitnikov andZu. A. Scherbakov:Žurn. Éksp. Teor. Fiz.,52, 97 (1967) (English translation:Sov. Phys. JETP,25, 63 (1967)).

    Google Scholar 

  20. R. J. Wetmore, D. C. Buckle, J. R. Lane andR. T. Siegel:Phys. Rev. Lett.,19, 1003 (1967);R. J. Wetmore: Thesis, College of William and Mary, Williamsburg, WM15 (1969).

    Article  ADS  Google Scholar 

  21. S. Berezin, G. Burleson, D. Eartly, A. Roberts andT. O. White:Phys. Lett.,30 B, 27 (1969);Phys. Rev. A,2, 1630 (1970).

    Article  ADS  Google Scholar 

  22. G. Backenstoss, J. Egger, T. von Egidy, R. Hagelberg, C. J. Herrlander, H. Kock, H. P. Povel, A. Schwitter andL. Tauscher: to be published inNucl. Phys.

  23. R. Bizzarri, E. Di Capua, V. Dore, G. Gialanella, P. Guidoni andI. Laakso:Nuovo Cimento,33, 1497 (1964);M. M. Block, T. Kikuchi, D. Koetke, C. R. Sun, R. Walker, G. Culligan, V. L. Telegdi andR. Winston:Nuovo Cimento,55, 501 (1968).

    Article  Google Scholar 

  24. R. W. Schmieder andR. Marrus:Phys. Rev. Lett.,25, 1692 (1970).

    Article  ADS  Google Scholar 

  25. R. L. Williams:Can. Journ. Phys.,35, 134 (1957).

    Article  ADS  Google Scholar 

  26. G. Careri, J. Reuss, F. Scaramuzzi andJ. O. Thomson:Low-Temperature Physics and Chemistry, edited byJ. R. Dillinger (Madison, Wis., 1958), p. 155;G. Careri, F. Scaramuzzi andJ. O. Thomson:Nuovo Cimento,13, 186 (1959).

  27. L. Meyer andF. Reig:Phys. Rev.,110, 279 (1958).

    Article  ADS  Google Scholar 

  28. K. R. Atkins:Phys. Rev.,116, 1339 (1959).

    Article  ADS  Google Scholar 

  29. B. Smith: CERN/NP Data sheet N2551-5A4 (1969).

  30. A. Bertin, G. Carboni, J. Duclos, U. Gastaldi, G. Gorini, G. Neri, J. Picard, O. Pitzurra, A. Placci, E. Polacco, G. Torelli, A. Vitale andE. Zavattini:Measurement of the 2P 3/2−2S1/2 energy difference in the (μHe)+ muonic ion by means of a tuuable infrared dye-laser, to be published inPhys. Lett. B. The current operation rate of the laser was one burst every few seconds. For this reason, setting theA i lower threshold at 4.5 KeV helped to reject those cases in which prompt 8.2 keV X-rays had been detected,i.e. the 2S-level had not been formed.

  31. A. H. De Borde:Proc. Roy. Soc., A67, 57 (1954).

    ADS  Google Scholar 

  32. Here it is necessary to assume for λSt the results of ref. (2), since the energy resolution of the NaI(Tl) detectors used for the present measurements is too poor to try to extract out the possible small contribution of 8 keV X-rays from the spectra of Fig. 20 and 21.

    Article  ADS  Google Scholar 

  33. H. A. Bethe andE. Salpeter:Encyclopedia of Physics, Vol.35, Chap. IV (Berlin, Gottingen and Heidelberg 1957).

  34. Y. Eisenberg andD. Kessler:Nuovo Cimento,19, 1195 (1961).

    Article  Google Scholar 

  35. I is worth-while noticing that in ref. (2), to justify more easily the experimental findings, preference was given to a strong Stark-mixing picture. In that case, however, the external Auger effect (see v)) was not included in the cascade process, since it was thought that it was not necessary, and a statistical initial population was assumed for the (n 0,l)-sublevels of then 0-level.

    Article  ADS  Google Scholar 

  36. This gives a reason for the fact that—with an entirely different hypothesis—a region of agreement was found in ref. (2), through a cascade calculation, between experimental results and theoretical predictions.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertin, A., Carboni, G., Placci, A. et al. Experimental study on the (μ 4He) +2S metastable system in helium gas. Nuov Cim B 26, 433–480 (1975). https://doi.org/10.1007/BF02738571

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738571

Navigation