Skip to main content
Log in

Problems of body-weight estimation in fossil primates

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Body-weight estimates of fossil primates are commonly used to infer many important aspects of primate paleobiology, including diet, ecology, and relative encephalization. It is important to examine carefully the methodologies and problems associated with such estimates and the degree to which one can have confidence in them. New regression equations for predicting body weight in fossil primates are given which provide body-weight estimates for most nonhominid primate species in the fossil record. The consequences of using different subgroups (evolutionary “grades”) of primate species to estimate fossil-primate body weights are explored and the implications of these results for interpreting the primate fossil record are discussed. All species (fossil and extant) were separated into the following “grades”: prosimian grade, monkey grade, ape grade, anthropoid grade, and all-primates grade. Regression equations relating lower molar size to body weight for each of these grades were then calculated. In addition, a female-anthropoid grade regression was also calculated for predicting body weight infernales of extinct, sexually dimorphic anthropoid species. These equations were then used to generate the fossil-primate body weights. In many instances, the predicted fossil-primate body weights differ substantially from previous estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blumenburg, B. (1981). Observations on the paleoecology, population sltructure and body weight of some Tertiary hominoids.J. hum. Evol. 10: 543–564.

    Article  Google Scholar 

  • Blumenburg, B. (1984). Allometry and evolution of Tertiary hominoids.J. hum. Evol. 13: 613–676.

    Article  Google Scholar 

  • Bown, T. (1979). New omomyid primates from middle Eocene rocks of west-central Hot Springs county, Wyoming.Folia primatol. 31: 48–73.

    PubMed  CAS  Google Scholar 

  • Bown, T., and Rose, K. (1976). New early Tertiary primates and a reappraisal of some Plesiadapiformes.Folia primatol. 26: 109–138.

    Google Scholar 

  • Bown, T., and Rose, K. (1984). Reassessment of some early Eocene Omomyidae, with description of a new genus and three new species.Folia primatol. 43: 97–112.

    Google Scholar 

  • Cachel, S. (1983). Diet of the Oligocene anthropoidsAegyptopithecus andApidium.Primates 24: 109–117.

    Article  Google Scholar 

  • Calder, W. (1984).Size, Function, and Life History, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Colbert, E. (1937). A new primate from the Upper Pondaung formation of Burma.Am. Mus. Novit. 951: 1–18.

    Google Scholar 

  • Fleagle, J. (1978). Size distribution of living and fossil primate faunas.Paleobiology 4: 67–76.

    Google Scholar 

  • Garn, S., and Lewis, A. (1958). Tooth-size, body-size and “giant” fossil man.Am. Anthropol. 60: 874–880.

    Article  Google Scholar 

  • Garn, S., Lewis, A., and Kerewsky, R. (1968). The magnitude and implications of the relationship between tooth size and body size.Arch, oral Biol. 13: 129–131.

    Article  CAS  Google Scholar 

  • Gazin, C. (1968). A new primate from the Torrejon middle Paleocene of the San Juan Basin, New Mexico.Proc. biol. Soc. Wash. 81: 629–634.

    Google Scholar 

  • Gazin, C. (1971). Paleocene primates from the Shotgun Member of the Fort Union Formation in the Wind River Basin, Wyoming.Proc. biol. Soc. Wash. 84: 13–38.

    Google Scholar 

  • Gingerich, P. (1975). New North American Plesiadapidae and a biostratigraphic zonation of the Middle and Upper Paleocene.Contr. Mus. Paleontol. Univ. Mich. 24: 135–148.

    Google Scholar 

  • Gingerich, P. (1976). Cranial anatomy and evolution of early Tertiary Plesiadapidae.Contr. Mus. Paleontol. Univ. Mich. 15: 1–141.

    Google Scholar 

  • Gingerich, P. (1977). Correlation of tooth size and body size in living hominoid primates, with a note on relative brain size inAegyptopithecus andProconsul.Am. J. phys. Anthrop. 47: 395–398.

    Article  PubMed  CAS  Google Scholar 

  • Gingerich, P. (1979). Phylogeny of Middle Eocene Adapidae in North America:Smilodectes andNotharctus.J. Paleontol. 53: 153–163.

    Google Scholar 

  • Gingerich, P. (1980). Dental and cranial adaptations in Eocene Adapidae.Z. Morph. Anthrop. 71: 135–142.

    CAS  Google Scholar 

  • Gingerich, P. (1981). Early Cenozoic Omomyidae and the evolutionary history of tarsiiform primates.J. hum. Evol. 10: 345–374.

    Article  Google Scholar 

  • Gingerich, P., and Dorr, J. (1979). Mandible ofChiromyoides minor from the Upper Paleocene Chappo Member of the Wasatch Formation, Wyoming.J. Paleontol. 53: 550–552.

    Google Scholar 

  • Gingerich, P., and Martin, R. (1981). Cranial morphology and adaptations in Eocene Adapidae. II. The Cambridge skull ofAdapts parisiensis.Am. J. phys. Anthrop. 56: 235–237.

    Article  Google Scholar 

  • Gingerich, P., and Simons, E. (1977). Systematics, phylogeny, and evolution of early Eocene Adapidae in North America.Contr. Mus. Paleontol. Univ. Mich. 24: 245–279.

    Google Scholar 

  • Gingerich, P., and Smith, B. (1985). Allometric scaling in the dentition of primates and insectivores. In Jungers, W. (ed.),Size and Scaling in Primate Biology, Plenum, New York, pp. 257–272.

    Google Scholar 

  • Gingerich, P., Smith, B., and Rosenberg, K. (1982). Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils.Am. J. phys. Anthrop. 58: 81–100.

    Article  PubMed  CAS  Google Scholar 

  • Gunnell, G., and Gingerich, P. (1981). A new species ofNiptomomys from the early Eocene of Wyoming.Folia primatol. 36: 128–137.

    PubMed  CAS  Google Scholar 

  • Gurche, J. (1982). Early primate brain evolution. In Armstrong, E., and Falk, D. (eds.),Primate Brain Evolution, Plenum, New York, pp. 227–246.

    Google Scholar 

  • Henderson, A., and Corruccini, R. (1976). Relationship between tooth size and body size in American blacks.J. dent. Res. 55: 94–96.

    PubMed  CAS  Google Scholar 

  • Jerison, H. (1973).The Evolution of the Brain and Intelligence, Academic Press, New York.

    Google Scholar 

  • Johnson, A. (1978). Tooth size/body size inGorilla gorilla andPongo pygmaeus.J. dent. Res. 57: 608.

    PubMed  Google Scholar 

  • Jungers, W. (ed.) (1985).Size and Scaling in Primate Biology, Plenum Press, New York.

    Google Scholar 

  • Kay, R. (1973).Mastication, Molar Tooth Structure, and Diet in Primates, Ph.D. thesis, Yale University, New Haven, Conn.

    Google Scholar 

  • Kay, R. (1975). The functional adaptations of primate molar teeth.Am. J. phys. Anthrop. 43: 195–216.

    Article  PubMed  CAS  Google Scholar 

  • Kay, R. (1977). The evolution of molar occlusion in the Cercopithecidae and early catarrhines.Am. J. phys. Anthrop. 46: 327–352.

    Article  PubMed  CAS  Google Scholar 

  • Kay, R., and Cartmill, M. (1977). Cranial morphology and adaptations ofPalaechthon nacimienti and other Paromomyidae, with a description of a new genus and species.J. hum. Evol. 6: 19–53.

    Article  Google Scholar 

  • Kay, R., and Simons, E. (1980). The ecology of Oligocene African Anthropoidea.Int. J. Primatol. 1: 21–37.

    Article  Google Scholar 

  • Karause, D. (1978). Paleocene primates from western Canada.CAn. J. Earth Sci. 15: 1250–1271.

    Google Scholar 

  • Orlosky, F. (1973).Comparative Dental Morphology of Extant and Extinct Cebidae, Ph.D. thesis, University of Washington, Seattle.

    Google Scholar 

  • Peters, R. (1983).The Ecological Implications of Body Size, Cambridge University Press, Cambridge.

    Google Scholar 

  • Rose, K. (1975). The Carpolestidae: Early Tertiary primates from North America.Bull. Mus. comp. Zool. 147: 1–74.

    Google Scholar 

  • Rose, K., and Bown, T. (1982). New plesiadapiform primates from the Eocene of Wyoming and Montana.J. Vert. Paleontol. 2: 63–69.

    Article  Google Scholar 

  • Schmidt-Nielsen, K. (1984).Scaling. Why is Animal Size so Important? Cambridge University Press, Cambridge.

    Google Scholar 

  • Simons, E., and Kay, R. (1983).Qatrania, new basal anthropoid primate from the Fayum, Oligocene of Egypt.Nature (London) 304: 624–626.

    Article  Google Scholar 

  • Simpson, G. (1955). The Phenacolemuridae, new family of early primates.Bull. Am. Mus. nat. Hist. 105: 417–441.

    Google Scholar 

  • Smith, R. (1981). Interpretation of correlations in intraspecific and interspecific allometry.Growth 45: 291–297.

    Google Scholar 

  • Smith, R. (1985). The present as a key to the past: Body weight of Miocene hominoids as a test of allometric methods for paleontological inference. In Jungers, W. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York, pp. 437–448.

    Google Scholar 

  • Straus, W., and Schön, M. (1960). Cranial capacity ofOreopithecus bambolii.Science 132: 670–672.

    Article  PubMed  Google Scholar 

  • Swindler, D. (1976).Dentition of Living Primates, Academic Press, London.

    Google Scholar 

  • Swindler, D., and Sirianni, J. (1975). Tooth and body size correlations inMacaco nemestrina.J. dent. Res. 54: 695.

    PubMed  CAS  Google Scholar 

  • Szalay, F. (1968). The beginnings of primates.Evolution 22: 19–36.

    Article  Google Scholar 

  • Szalay, F. (1971). The European adapid primatesAgerina andPronycticebus.Am. Mus. Novit. 2466: 1–19.

    Google Scholar 

  • Szalay, F. (1973). New Paleocene primates and a diagnosis of the new suborder Paromomyiformes.Folia primatol. 19: 73–87.

    Article  PubMed  CAS  Google Scholar 

  • Szalay, F., and Berzi, A. (1973). Cranial anatomy ofOreopithecus.Science 180: 183–185.

    Article  PubMed  CAS  Google Scholar 

  • Walker, A., and Pickford, M. (1983). New postcranial fossils ofProconsul africanus andProconsul nyanzae. In Ciochon, R., and Corruccini, R. (eds.),New Interpretations of Ape and Human Ancestry, Plenum, New York, pp. 325–352.

    Google Scholar 

  • Walker, A., Falk, D., Smith, R., and Rickford, M. (1983). The skull ofProconsul africanus: Reconstruction and cranial capacity.Nature (London) 305: 525–527.

    Article  Google Scholar 

  • Wilson, J., and Szalay, F. (1972). New paromomyid primate from Middle Paleocene beds, Kutz Canyon area, San Juan Basin, New Mexico.Am. Mus. Movit. 2499: 1–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conroy, G.C. Problems of body-weight estimation in fossil primates. Int J Primatol 8, 115–137 (1987). https://doi.org/10.1007/BF02735160

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02735160

Key words

Navigation