Skip to main content
Log in

Relaxor type perovskites: Primary candidates of nano-polar regions

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Relaxor properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) and non-lead perovskite thin films have been analysed in terms of large frequency dispersion of dielectric response at low temperatures. A wide spectrum of dielectric relaxation was observed in the frequency-dependent response of the imaginary part of the dielectric permittivity. Transformation from normal ferroelectric to relaxor behaviour has been observed in the case of the Ca substituting the BaTiO3 thin films. A number of techniques were exploited to investigate the wide spectrum of relaxation times in pulsed laser ablated thin films.ac anddc electric field induced complex dielectric properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) thin films were studied as function of frequencies at different temperatures. Nonlinear behaviour of dielectric susceptibility with respect to the amplitude of theac drive was observed at lower temperatures. The frequency dependence of transition temperatureT m (temperature of the maximum of dielectric constant) was studied using the Vogel-Fulcher relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cross L E 1987Ferroelectrics 76 241

    CAS  Google Scholar 

  2. Smolenskii G A 1965 Sov.Phys. Solid State 6 1676

    Google Scholar 

  3. Viehland D, Jang S, Cross L E and Wittig M 1990J. Appl. Phys. 68 2916

    Article  CAS  Google Scholar 

  4. Bokov V A and Myl’nikova I E 1961Sov. Phys. Solid State 3 613

    Google Scholar 

  5. Westphal V, Kleeman W and Glinchuk M D 1992Phys. Rev. Lett. 68 847

    Article  CAS  Google Scholar 

  6. Viehland D, Li J F, Jang S J, Cross L E and Wittig M 1992Phys. Rev. B46 8013

    Google Scholar 

  7. Qian H and Bursill L A 1996Int. J. Mod. Phys. B10 2007

    Google Scholar 

  8. Chen I-W, Li P and Wang Y 1996J. Phys. Chem. Solids 57 1525

    Article  CAS  Google Scholar 

  9. Glazounov A E and Tagantsev A K 1998Appl. Phys. Lett. 75 856

    Article  Google Scholar 

  10. Vugmeister and Rabitz 2000Phys. Rev. B61 14448

    Google Scholar 

  11. Shimizu M and Shiosaki T 1996Mater. Res. Soc. Symp. Proc. 401 129

    CAS  Google Scholar 

  12. Laha A, Saha S and Krupanidhi S B 2003Thin Solid Films 424 274

    Article  CAS  Google Scholar 

  13. Jiang M C, Wu T B and Wu J M 1995Jpn. J. Appl. Phys. 34 3153

    Article  CAS  Google Scholar 

  14. Kighelman Zet al 1998Appl. Phys. Lett. 73 2281

    Article  CAS  Google Scholar 

  15. Viehland D, Jang S, Cross L E and Wuttig M 1991Philos. Mag. B64 335

    Google Scholar 

  16. Bitoh T, Obba K, Takamatsu M, Shirane T and Chikazawa S 1996J. Magn. Magn. Mater. 154 59

    Article  CAS  Google Scholar 

  17. Duffrene L, Gy R, Brlet H and Piques R 1997J. Non-Cryst. Solids 215 208

    Article  CAS  Google Scholar 

  18. Labarta A, Batlle X, Martinez B and Obradors X 1992Phys. Rev. B46 8994

    Google Scholar 

  19. Toystolytkin A I, Belous N A and Lezhnenko IV 1994J. Magn. Magn. Mater. 130 293

    Article  Google Scholar 

  20. Goya G F, Rechenberg H R and Sagredo V 2001J. Magn. Magn. Mater. 226 1298

    Article  Google Scholar 

  21. Akbas M A and Davies P K 1997J. Am. Ceram. Soc. 80 2933

    Article  CAS  Google Scholar 

  22. Davies P K, Tong J and Negas T 1997J. Am. Ceram. Soc. 80 1727

    Article  CAS  Google Scholar 

  23. Glazounov A E, Tagantsev A K and Bell A J 1996Phys. Rev. B53 11281

    Google Scholar 

  24. Zhang Y, Gui H, Li L and Gui Z 1997Jpn. J. Appl. Phys. 36 L1325

    Article  Google Scholar 

  25. Burns G and Dacol F H 1983Phys. Rev. B28 2527

    Google Scholar 

  26. Kingon A I, Streiffer, Basceri C and Summerfelt S R 1996Mater. Res. Soc. Bull. 21(7) 46

    CAS  Google Scholar 

  27. Auciello O, Scott J F and Ramesh R 1998Phys. Today 51 22

    CAS  Google Scholar 

  28. Jaffe B, Cook W R and Jaffe H 1971Piezoelectric ceramics (R.A.N. Publishers)

  29. Yu Z, Ang C, Guo R and Bhalla A 2002J. Appl. Phys. 92 2655

    Article  CAS  Google Scholar 

  30. Victor P, Ranjith R, Sarkar A, Vinayak R, Saha S and Krupanidhi S B 2002Proc. Mater. Res. Soc. U 12.5

  31. Veenhuiset al 2000Appl. Phys. B70 797

    Google Scholar 

  32. Shaw T M, Trolier McKinstry S and McIntyre P C 2000Annu. Rev. Mater. Sci. 30 263

    Article  CAS  Google Scholar 

  33. Zhang, Han Y H, Lal M and Smyth D M 1987J. Am. Ceram. Soc. 70 100

    Article  CAS  Google Scholar 

  34. Han Y H, Appleby J B and Smyth D M 1987J. Am. Ceram. Soc. 70 96

    Article  CAS  Google Scholar 

  35. Park J G, Oh T S and Kim Y H 1992J. Mater. Sci. 27 5713

    Article  CAS  Google Scholar 

  36. Kirilov V V and Isupov V A 1973Ferroelectrics 5 3

    Google Scholar 

  37. Smolenskii G A and Agranovskya A I 1958Sov. Phys. Tech. Phys. 3 1380

    CAS  Google Scholar 

  38. Krishna P S R, Dhananjai Pandey, Tiwari V S, Chakravarthy R and Dasannacharya B A 1993Appl. Phys. Lett. 62 231

    Article  CAS  Google Scholar 

  39. Chang M C and Chan Yu S C 2000J. Mater. Sci. Lett. 19 1323

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor C N R Rao on his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krupanidhi, S.B. Relaxor type perovskites: Primary candidates of nano-polar regions. J Chem Sci 115, 775–788 (2003). https://doi.org/10.1007/BF02708267

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708267

Keywords

Navigation