Skip to main content
Log in

Cofilin-mediated neurodegeneration in alzheimer’s disease and other amyloidopathies

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

An Erratum to this article was published on 02 October 2007

Abstract

Transport defects may arise in various neurodegenerative diseases from failures in molecular motors, microtubule abnormalities, and the chaperone/proteasomal degradation pathway leading to aggresomal-lysosomal accumulations. These defects represent important steps in the neurodegenerative cascade, although in many cases, a clear consensus has yet to be reached regarding their causal relationship to the disease. A growing body of evidence lends support to a link between neurite transport defects in the very early stages of many neurodegenerative diseases and alterations in the organization and dynamics of the actin cytoskeleton initiated by filament dynamizing proteins in the ADF/cofilin family. This article focuses on cofilin, which in neurons under stress, including stress induced by the amyloid-β (Aβ) 1–42 peptide, undergoes dephosphorylation (activation) and forms rod-shaped actin boundles (rods). Rods inhibit transport, are sites of amyloid precursor protein accumulation, and contribute to the pathology of Alzheimer’s disease. Because rods form rapidly in response to anoxia, they could also contribute to synaptic deficits associated with ischemic brain injury (e.g., stroke). Surprisingly, cofilin undergoes phosphorylation (inactivation) in hippocampal neurons treated with Aβ1–40 at high concentrations, and these neurons undergo dystrophic morphological changes, including accumulation of pretangle phosphorylated-τ. Therefore, extremes in phosphoregulation of cofilin by different forms of Aβ may explain much of the Alzheimer’s disease pathology and provide mechanisms for synaptic loss and plaque expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bazan, N. G., Palacios-Pelaez, R., and Lukiw, W. J. (2002). Hypoxia signaling to genes: significance in Alzheimer’s disease. Mol Neurobiol. 26(2–3), 283–298.

    Article  PubMed  CAS  Google Scholar 

  2. DeKosky, S. T. and Scheff, S. W. (1990). Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol. 27(5), 457–464.

    Article  PubMed  CAS  Google Scholar 

  3. Terry, R. D., Masliah, E., Salmon, D. P., et al. (1991). Physical basis of cognitive alterations in Alzheimer’s disease; synapse loss is the major correlate of cognitive impairment. Ann Neurol. 30(4), 572–580.

    Article  PubMed  CAS  Google Scholar 

  4. Coleman, P. D. and Yao, P. J. (2003). Synaptic slaughter in Alzheimer’s disease. Neurobiol Aging 24(8), 1023–1027.

    Article  PubMed  CAS  Google Scholar 

  5. Davies, C. A., Mann, D. M., Sumpter, P. Q., and Yates, P. O. (1987). A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s Disease. J Neurol Sci. 78(2), 151–164.

    Article  PubMed  CAS  Google Scholar 

  6. Minamide, L. S., Striegl, A.M., Boyle, J. A., Meberg, P. J., and Bamburg, J. R. (2000). Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat Cell Biol. 2(9), 628–636.

    Article  PubMed  CAS  Google Scholar 

  7. Maloney, M. T., Kinley, A. W., Pak, C. W., and Bamburg, J. R. (2006). ADF/cofilin, actin dynamics and disease. In: dos Remedos C and Chhabra D, eds., Disorders Caused by Actin and Actin-binding Proteins New York: Wiley, in press.

    Google Scholar 

  8. Vetrivel, K. S. and Thinakaran, G. (2006). Amyloidogenic processing of beta-amyloid precursor protein in intracellular compartments. Neurology 66(2 Suppl 1), S69-S73.

    PubMed  CAS  Google Scholar 

  9. Chyung, J. H., Raper, D. M., and Selkoe, D. J. (2005). Gamma-secretase exists on the plasma membrane as an intact complex that accepts substrates and effects intramembrane cleavage. J Biol Chem. 280(6), 4383–4392.

    Article  PubMed  CAS  Google Scholar 

  10. Ehehalt, R., Keller, P., Haass, C., Thiele, C., and Simons, K. (2003). Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol. 160(1), 113–123.

    Article  PubMed  CAS  Google Scholar 

  11. Glenner, G. G., and Wong, C. W. (1984). Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun. 122(3), 1131–1135.

    Article  PubMed  CAS  Google Scholar 

  12. Mattson, M. P. (2004). Pathways towards and away from Alzheimer’s disease. Nature 430, 631–639.

    Article  PubMed  CAS  Google Scholar 

  13. Tanzi, R. E. and Bertram, L. (2005). Twenty years of the Alzheimer’s Disease hypothesis: A genetic perspective. Cell 120, 545–555.

    Article  PubMed  CAS  Google Scholar 

  14. Schmechel, D. E., Saunders, A. M., Strittmatter, W. J., et al. (1993). Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci U S A 90, 9649–9653.

    Article  PubMed  CAS  Google Scholar 

  15. Strittmatter, W. J., Saunders, A. M., Schmechel, D., et al. (1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90(5), 1977–1981.

    Article  PubMed  CAS  Google Scholar 

  16. Glenner, G. G. and Wong, C. W. (1984). Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 120(3), 885–890.

    Article  PubMed  CAS  Google Scholar 

  17. Bernstein, B. W. and Bamburg, J. R. (2003). Actin-ATP hydrolysis is a major energy drain for neurons. J Neurosci. 23(1), 1–6.

    PubMed  CAS  Google Scholar 

  18. Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K., and Uemura, T. (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108(2), 233–246.

    Article  PubMed  CAS  Google Scholar 

  19. Ghola, A., Birkenfield, J., and Bokoch, G. M. (2005). Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nature Cell Biol. 7(1), 21–29.

    Article  CAS  Google Scholar 

  20. Huang, T. Y., DerMardirossian, C., and Bokoch, G. M. (2006). Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol. 18(1), 26–31.

    Article  PubMed  CAS  Google Scholar 

  21. Hawkins, M., Pope, B., Maciver, S. K., and Weeds, A. G. (1993). The interaction of human actin depolymerizing factor with actin is pH regulated. Biochemistry 32(38), 9985–9993.

    Article  PubMed  CAS  Google Scholar 

  22. Hayden, S. M., Miller, P. S., Brauweiler, A., and Bamburg, J. R. (1993). Analysis of the interactions of actin depolymerizing factor with G- and F-actin. Biochemistry 32(38), 9994–10,004.

    Article  PubMed  CAS  Google Scholar 

  23. Carlier, M. -F., Laurent, V., Santolini, J., et al. (1997). Actin Depolymerizing Factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol. 136(6), 1307–1322.

    Article  PubMed  CAS  Google Scholar 

  24. McGough, A., Pope, B., Chiu, W., and Weeds, A. (1997). Cofilin changes the twist of F-actin: implications for actin dynamics and cellular function. J Cell Biol. 138(4), 771–781.

    Article  PubMed  CAS  Google Scholar 

  25. Bobokov, A. A., Muhlrad, A., Pavlov, D. A., Kokabi, K., Yilmaz, A., and Reisler, E. (2006). Cooperative effects of cofilin (ADF) on actin structure suggest allosteric mechanism of cofilin function. J Mol Biol. 256(2), 325–334.

    Article  CAS  Google Scholar 

  26. Edwards, D. C., Sanders, L. C., Bokoch, G. M., and Gill, G. N. (1999). Activation of LIM kinase by Pak1 couples Rac/Cdc42 GTPase signaling to actin cytoskeletal dynamics. Nature Cell Biol. 1(5), 253–259.

    Article  PubMed  CAS  Google Scholar 

  27. Dan, C., Kelly, A., Bernard, O., and Minden, A. (2001). Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J Biol Chem. 276(34), 32,115–32,121.

    Article  CAS  Google Scholar 

  28. Arber, S., Barbayannis, F. A., Hanser, H., et al. (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393(6687), 805–809.

    Article  PubMed  CAS  Google Scholar 

  29. Yang, N., Higuchi, O., Ohashi, K., et al. (1998). Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393(6687), 809–812.

    Article  PubMed  CAS  Google Scholar 

  30. Soosairajah, J., Maiti, S., Wiggan, O., et al. (2005). Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO J. 24(3), 473–486.

    Article  PubMed  CAS  Google Scholar 

  31. Meng, Y., Zhang, Y., Tregoubov, V., et al. (2002). Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35(1), 121–133.

    Article  PubMed  CAS  Google Scholar 

  32. Bamburg, J. R., and Wiggan, O. P. (2002). ADF/cofilin and actin dynamics in disease. Trends Cell Biol. 12(12), 598–605.

    Article  PubMed  CAS  Google Scholar 

  33. Bellugi, U., Lichtenberger, L., Mills, D., Galaburda, A., and Korenberg, J. R. (1999). Bridging cognition, the brain and molecular genetics: evidence from William’s syndrome. Trends Neurosci. 22, 197–207.

    Article  PubMed  CAS  Google Scholar 

  34. Zhao, L., Ma, Q. L., Calon, F., et al. (2006). Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. Nat Neurosci. 9(2), 234–242.

    Article  PubMed  CAS  Google Scholar 

  35. Mann, G., (1894). Histochemical changes induced in sympathetic, motor, and sensory nerve cells by functional activity. J Anat Physiol. London 19, 100–108.

    Google Scholar 

  36. Fukui, Y., and Katsumaru, H. (1979). Nuclear actin bundles in Amoeba, Dictyostelium and human HeLa cells induced by dimethyl sulfoxide. Exp Cell Res. 120(2), 451–455.

    Article  PubMed  CAS  Google Scholar 

  37. Iida, K., Iida, H., and Yahara, I. (1986). Heat shock induction of intranuclear actin rods in cultured mammalian cells. Exp Cell Res. 165(1), 207–215.

    Article  PubMed  CAS  Google Scholar 

  38. Nishida, E., Iida, K., Yonezawa, N., Koyasu, S., Yahara, I., and Sakai, H. (1987). Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc Natl Acad Sci U S A 84(15), 5262–5266.

    Article  PubMed  CAS  Google Scholar 

  39. Ohta, Y., Nishida, E., Sakai, H., and Miyamoto, E. (1989). Dephosphorylation of cofilin accompanies heat shock-induced nuclear accumulation of cofilin. J Biol Chem. 264(27), 16,143–16,148.

    CAS  Google Scholar 

  40. Iida, K., Matsumoto, S., and Yahara, I. (1992). The KKRKK sequence is involved in heat shock-induced nuclear translocation of the 18-kDa actin-binding protein, cofilin. Cell Struct Funct. 17(1), 39–46.

    Article  PubMed  CAS  Google Scholar 

  41. Ono, S., Abe, H., Nagaoka, R., and Obinata, T. (1993). Colocalization of ADF and cofilin in intranuclear actin rods of cultured muscle cells. J Muscle Res Cell Motil. 14(2), 195–204.

    Article  PubMed  CAS  Google Scholar 

  42. Moriyama, K., Iida, K., and Yahara, I. (1996). Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells 1(1), 73–86.

    Article  PubMed  CAS  Google Scholar 

  43. Aizawa, H., Fukui, Y., and Yahara, I. (1997). Live dynamics of Dictyostelium cofilin suggests a role in remodeling actin latticework into bundles. J Cell Sci. 110 (Pt 19), 2333–2344.

    PubMed  CAS  Google Scholar 

  44. Sameshima, M., Kishi, Y., Osumi, M., Mahadeo, D., and Cotter, D. A. (2000). Novel actin cytoskeleton: actin tubules. Cell Struct Funct. 25(5), 291–295.

    Article  PubMed  CAS  Google Scholar 

  45. Maloney, M. T., Minamide, L.S., Kinley, A. W., Boyle, J. A., and Bamburg, J. R. (2005). Beta-secretase-cleaved amyloid precursor protein accumulates at actin inclusions induced in neurons by stress or amyloid beta: a feedforward mechanism for Alzheimer’s disease. J Neurosci. 25(49), 11,313–11,321.

    Article  CAS  Google Scholar 

  46. Deshpande, A., Mina, E., Glabe, C., and Busciglio, J. (2006). Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons. J. Neurosci. 26(22), 6011–6018.

    Article  PubMed  CAS  Google Scholar 

  47. Lacor, P. N., Buniel, M. C., Chang, L., et al. (2004). Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci. 24(45), 10,191–10,200.

    Article  CAS  Google Scholar 

  48. Masliah, E. (2000). The role of synaptic proteins in Alzheimer’s disease. Ann N Y Acad Sci. 924, 68–75.

    Article  PubMed  CAS  Google Scholar 

  49. Mucke, L., Masliah, E., Yu, G. Q., et al. (2000). High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20(11), 4050–4058.

    PubMed  CAS  Google Scholar 

  50. Jang, D. H., Han, J. H., Lee, S. H., et al. (2005). Cofilin expression induces cofilin-actin rod formation and disrupts synaptic structure and function in Aplysia synapses. Proc. Natl Acad Sci U S A. 102(44), 16,072–16,077.

    Article  CAS  Google Scholar 

  51. Yang, A. J., Knauer, M., Burdick, D.A., and Glabe, C. (1995). Intracellular A beta 1–42 aggregates stimulate the accumulation of stable, insoluble amyloidogenic fragments of the amyloid precursor protein in transfected cells. J Biol Chem. 270(24), 14,786–14,792.

    CAS  Google Scholar 

  52. Hartmann, J., Erb, C., Ebert, U., et al. (2004). Central cholinergic functions in human amyloid precursor protein knock-in/presenilin-1 transgenic mice. Neuroscience 125(4), 1009–1017.

    Article  PubMed  CAS  Google Scholar 

  53. Lambert, M. P., Barlow, A. K., Chromy, B. A., et al. (1998). Diffusible, nonfibrillar ligands derived from Abeta 1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A. 95(11), 6448–6453.

    Article  PubMed  CAS  Google Scholar 

  54. Walsh, D. M., Klyubin, I., Fadeeva, J. V., et al. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880), 535–539.

    Article  PubMed  CAS  Google Scholar 

  55. Wang, H. W., Pasternak, J. F., Kuo, H., et al. (2002). Soluble oligomers of beta amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res. 924(2), 133–140.

    Article  PubMed  CAS  Google Scholar 

  56. Lesné, S., Koh, M. T., Kotilinek, L., et al. (2006). A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440(7082), 352–357.

    Article  PubMed  CAS  Google Scholar 

  57. Podlisny, M. B., Ostaszewski, B. L., Squazzo, S. L., et al. (1995). Aggregation of secreted amyloid beta-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J Biol Chem. 270(16), 9564–9570.

    Article  PubMed  CAS  Google Scholar 

  58. Podlisny, M. B., Walsh, D. M., Amarante, P., et al. (1998). Oligomerization of endogenous and synthetic amyloid beta-protein at nanomolar levels in cell culture and stabilization of monomer by Congo red. Biochemistry 37(11), 3602–3611.

    Article  PubMed  CAS  Google Scholar 

  59. Walsh, D. M., Klyubin, I., Shankar, G. M., et al. (2005). The role of cell-derived oligomers of Abeta in Alzheimer’s disease and avenues for therapeutic intervention. Biochem Soc Trans. 33(Pt 5), 1087–1090.

    Article  PubMed  CAS  Google Scholar 

  60. Cleary, J. P., Walsh, D. M., Hofmeister, J. J., et al. (2005). Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci. 8(1), 79–84.

    Article  PubMed  CAS  Google Scholar 

  61. Klyubin, I., Walsh, D. M., Lemere, C. A., et al. (2005). Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nat Med. 11(5), 556–561.

    Article  PubMed  CAS  Google Scholar 

  62. Busciglio, J., Lorenzo, A., and Yankner, B. A. (1992). Methodological variables in the assessment of beta amyloid neurotoxicity. Neurobiol Aging 13(5), 609–612.

    Article  PubMed  CAS  Google Scholar 

  63. Grace, E. A., Rabiner, C. A., and Busciglio, J. (2002). Characterization of neuronal dystrophy induced by fibrillar amyloid beta: implications for Alzheimer’s disease. Neuroscience 114(1), 265–273.

    Article  PubMed  CAS  Google Scholar 

  64. Grace, E. A. and Busciglio, J. (2003). Aberrant activation of focal adhesion proteins mediates fibrillar amyloid beta-induced neuronal dystrophy. J Neurosci. 23(2), 493–502.

    PubMed  CAS  Google Scholar 

  65. Calderwood, D. A., Shattil, S. J., and Ginsberg, M. H. (2000). Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J Biol Chem. 275(30), 22,607–22,610.

    Article  CAS  Google Scholar 

  66. Giancotti, F. G. and Ruoslahti, E. (1999). Integrin signaling. Science 285(5430), 1028–1032.

    Article  PubMed  CAS  Google Scholar 

  67. Turner, C. E. (2000). Paxillin and focal adhesion signaling, Nat Cell Biol, 2(12), E231-E236.

    Article  PubMed  CAS  Google Scholar 

  68. Chen, G. C., Turano, B., Ruest, P. J., Hagel, M., Settleman, J., and Thomas, S. M. (2005). Regulation of Rho and Rac signaling to the actin cytoskeleton by paxillin during Drosophila development. Mol Cell Biol. 25(3), 979–987.

    Article  PubMed  CAS  Google Scholar 

  69. Heredia, L., Helguera, P., de Olmos, S., et al. (2006). Phosphorylation of ADF/cofilin by LIM-kinase mediates amyloid β-induced degeneration: A potential mechanism of neuronal dystrophy in Alzheimer’s disease. J Neurosci. 26(24), 6533–6542.

    Article  PubMed  CAS  Google Scholar 

  70. Gong, Y., Chang, L., Viola, K. L., et al. (2003). Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci U S A. 100(18), 10,417–10,422.

    Article  CAS  Google Scholar 

  71. Ohno, M., Chang, L., Tseng, W., et al. (2006). Temporal memory deficits in Alzheimer’s mouse models: rescue by genetic deletion of BACE1. Eur J Neurosci 23(1), 251–260.

    Article  PubMed  Google Scholar 

  72. Wang, Y., Shibasaki, F., and Mizuno, K. (2005). Calcium signal-induced cofilin dephosphorylation is mediated by Slingshot via calcineurin. J Biol Chem. 280(13), 12,683–12,689.

    CAS  Google Scholar 

  73. Demuro, A., Mina, E., Kayed, R., Milton, S. C., Parker, I., and Glabe, C. G. (2005). Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem. 280(17), 17,294–17,300.

    Article  CAS  Google Scholar 

  74. Roselli, F., Tirard, M., Lu, J., et al. (2005). Soluble beta-amyloid 1–40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. J Neurosci. 25(48), 11,061–11,070.

    Article  CAS  Google Scholar 

  75. Xie, C. W. (2004). Calcium-regulated signaling pathways: role in amyloid beta-induced synaptic dysfunction. Neuromolecular Med. 6(1), 53–64.

    Article  PubMed  CAS  Google Scholar 

  76. Cook, C. N., Hejna, M. J., Magnuson, D. J., and Lee, J. M. (2005). Expression of calcipressinl, an inhibitor of the phosphatase calcineurin, is altered with aging and Alzheimer’s disease. J. Alzheimers Dis. 8(1), 63–73.

    PubMed  CAS  Google Scholar 

  77. Stokin, G. B., Lillo, C., Falzone, T. L., et al. (2005). Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307(5713), 1282–1288.

    Article  PubMed  CAS  Google Scholar 

  78. Takahashi, R. H., Almeida, C. G., Kearney, P.F., et al. (2004). Oligomerization of Alzheimer’s beta-amyloid within processes and synapses of cultured neurons and brain. J Neurosci. 24(14), 3592–3599.

    Article  PubMed  CAS  Google Scholar 

  79. Cataldo, A. M., Petanceska, S., Peterhoff, C. M., et al. (2003). App gene dosage modulates endosomal abnormalities of Alzheimer’s disease in a segmental trisomy 16 mouse model of down syndrome. J Neurosci. 23(17), 6788–6792.

    PubMed  CAS  Google Scholar 

  80. Cataldo, A. M., Barnett, J. L., Pieroni, C., and Nixon, R. A. (1997). Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer’s disease: neuropathologic evidence for a mechanism of increased beta-amyloidogenesis. J Neurosci. 17(16), 6142–6151.

    PubMed  CAS  Google Scholar 

  81. Cataldo, A. M., Peterhoff, C. M., Troncoso, J. C., Gomez-Isla, T., Hyman, B. T., and Nixon, R. A. (2000). Endocytic pathway abnormalities precede amyloid-β deposition in sporadic Alzheimer’s disease and Down syndrome. Differential effects of ApoE genotype and presenilin mutations. Am J Pathol. 157(1), 277–286.

    PubMed  CAS  Google Scholar 

  82. Cataldo, A. M., Petanceska, S., Terio, N. B., et al. (2004). Abeta localization in abnormal endosomes: association with earliest Abeta elevations in AD and Down syndrome. Neurobiol Aging 250(10), 1263–1272.

    Article  CAS  Google Scholar 

  83. Whitehouse P. J., Struble, R. G., Clark, A. W., and Price, D. L. (1982). Alzheimer disease: plaques, tangles, and the basal forebrain. Ann Neurol. 12(5), 494.

    Article  PubMed  CAS  Google Scholar 

  84. Mann, D. M., Yates, P. O., and Marcyniuk, B. (1984). Alzheimer’s presenile dementia, senile dementia of Alzheimer type and Down’s syndrome in middle age form an age related continuum of pathological changes. Neuropathol Appl Neurobiol. 10(3), 185–207.

    PubMed  CAS  Google Scholar 

  85. Casanova, M. F., Walker, L. C., Whitehouse, P. J., and Price, D. L. (1985) Abnormalities of the nucleus basalis in Down’s syndrome. Ann Neurol. 18(3), 310–313.

    Article  PubMed  CAS  Google Scholar 

  86. Mufson, E. J., Bothwell, M., and Kordower, J. H. (1989). Loss of nerve growth factor receptor-containing neurons in Alzheimer’s disease: a quantitative analysis across subregions of the basal forebrain. Exp Neurol 105(3), 221–232.

    Article  PubMed  CAS  Google Scholar 

  87. Ihamandas, J. H., Cho, C., Jassar, B., Harris, K., MacTavish, D., and Easaw, J. (2001). Cellular mechanisms for amyloid beta-protein activation of rat cholinergic basal forebrain neurons. J Neurophysiol. 86(3), 1312–1320.

    Google Scholar 

  88. Cooper, J. D., Salehi, A., Delcroix, J. D., et al. (2001). Failed retrograde transport of NGF in a mouse model of Down’s syndrome: reversal of cholinergic neurodegenerative phenotypes following NGF infusion. Proc. Natl Acad Sci U S A. 98(18), 10,439–10,444.

    Article  CAS  Google Scholar 

  89. Sofroniew, M. V., Howe, C. L., Mobley, W. C. (2001). Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci. 24, 1217–1281.

    Article  PubMed  CAS  Google Scholar 

  90. Hiruma, H., Katakura, T., Takahashi, S., Ichikawa, T., and Kawakami, T. (2003). Glutamate and amyloid beta-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms. J Neurosci. 23(26), 8967–8977.

    PubMed  CAS  Google Scholar 

  91. Arias, C., Becerra-Garcia, F., and Tapia, R. (1998). Glutamic acid and Alzheimer’s disease. Neurobiology (Bp). 6(1), 33–43.

    CAS  Google Scholar 

  92. Lancelot, E., and Beal, M. F. (1998). Glutamate toxicity in chronic neurodegenerative disease. Prog Brain Res. 116, 331–347.

    Article  PubMed  CAS  Google Scholar 

  93. Yankner, B. A., Duffy, L. K., and Kirschnur, D. A. (1990). Neurotoxic effect of amyloid beta protein: reversal by tachykinin neuropeptides. Science 250(4978), 279–282.

    Article  PubMed  CAS  Google Scholar 

  94. Kasa, P., Papp, H., Zombori, J., Mayer, P., and Checler, F. (2003). C-terminal fragments of amyloid-beta peptide cause cholinergic axonal degeneration by a toxic effect rather than by physical injury in the nondemented human brain. Neurochem Res. 28(3–4), 493–498.

    Article  PubMed  CAS  Google Scholar 

  95. Salehi, A., Delcroix, J. D., Belichenko, P. V., et al. (2006). Increased APP expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51, 29–42.

    Article  PubMed  CAS  Google Scholar 

  96. Sun, X., Tong, Y., Qing, H., Chen, C. H., Song, W. (2006). Increased BACE1 maturation contributes to the pathogenesis of Alzheimer’s disease in Down syndrome. FASEB J. 20(9), 1361–1368.

    Article  PubMed  CAS  Google Scholar 

  97. Sun, X., He, G., and Song, W. (2006). BACE2, as a novel APP theta-secretase, is not responsible for the pathogenesis of Alzheimer’s disease in Down syndrome. FASEB J. 20(9), 1369–1376.

    Article  PubMed  CAS  Google Scholar 

  98. Arron, J. R., Winslow, M. M., Polleri, A., et al. (2006). NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441(7093), 595–600.

    Article  PubMed  CAS  Google Scholar 

  99. Kamal, A., Stokin, G. B., Yang, Z., Xia, C. H., and Goldstein, L. S. (2000). Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28(2), 449–459.

    Article  PubMed  CAS  Google Scholar 

  100. Kamal, A., Almenar-Queralt, A., LeBlanc, J. F., Roberts, E. A., and Goldstein, L. S. (2001). Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414(6864), 643–648.

    Article  PubMed  CAS  Google Scholar 

  101. Papp, H., Pakaski, M., and Kasa, P. (2002). Presenilin-1 and the amyloid precursor protein are transported bidirectionally in the sciatic nerve of adult rat. Neurochem Int. 41(16), 429–435.

    Article  PubMed  CAS  Google Scholar 

  102. Sheng, J. G., Price, D. L., and Koliatsos, V. E. (2003). The beta-amyloid-related proteins presenilin 1 and BACE1 are axonally transported to nerve terminals in the brain. Exp Neurol. 184(2), 1053–1057.

    Article  PubMed  CAS  Google Scholar 

  103. Inomata, H., Nakamura, Y., Hayakawa, A., et al. (2003). A scaffold protein JIP-1b enhances amyloid precursor protein phosphorylation by JNK and its association with kinesin light chain 1. J Biol Chem. 278(25), 22,946–22,955.

    Article  CAS  Google Scholar 

  104. Matsuda, S., Matsuda, Y., and D’Adamio, L. (2003). Amyloid beta protein precursor (AbetaPP), but not AbetaPP-like protein 2, is bridged to the kinesin light chain by the scaffold protein JNK-interacting protein 1. J Biol Chem. 278(40), 38,601–38,606.

    Article  CAS  Google Scholar 

  105. Kawarabayashi, T., Shoji, M., Yamaguchi, H., et al. (1993). Amyloid beta protein precursor accumulates in swollen neurites throughout rat brain with aging. Neurosci Lett. 153(1), 73–76.

    Article  PubMed  CAS  Google Scholar 

  106. Roberts, G. W., Gentleman, S. M., Lynch, A., Murray, L., Landon, M., and Craham, D. I. (1994). Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 57(4), 419–425.

    PubMed  CAS  Google Scholar 

  107. Smith, D. H., Chen, X. H., Iwata, A., and Graham, D. I. (2003). Amyloid beta accumulation in axons after traumatic brain injury in humans. J Neurosurg. 98(5), 1072–1077.

    PubMed  CAS  Google Scholar 

  108. Chen, X. H., Siman, R., Iwata, A., Meaney, D. F., Trojanowski, J. Q., and Smith, D. H. (2004). Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am J Pathol. 165(2), 357–371.

    PubMed  CAS  Google Scholar 

  109. Stokin, G. B. and Goldstein, L. S. (2006). Linking molecular motors to Alzheimer’s disease. J Physiol Paris 99(2–3), 193–200.

    Article  PubMed  CAS  Google Scholar 

  110. Gouras, G. K., Almeida, C.G., and Takahashi, R. H. (2005). Intraneuronal Abeta accumulation and origin of plaques in Alzheimer’s disease. Neurobiol Aging. 26(9), 1235–1244.

    Article  PubMed  CAS  Google Scholar 

  111. Borchelt, D. R., Ratovitski, T., van Lare, J., et al. (1997). Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19(4), 939–945.

    Article  PubMed  CAS  Google Scholar 

  112. Delcroix, J. D., Valletta, J., Wu, C., Hunt, S. J., Kowal, A. S., and Mobley, W. C. (2003). NGF signaling in sensory neurons: evidence that early endosomes cary NGF retrograde signals. Neuron 39, 69–84.

    Article  PubMed  CAS  Google Scholar 

  113. Koo, E. H. and Squazzo, S. L. (1994). Evidence that production and release of amyloid betaprotein involves the endocytic pathway. J Biol Chem. 269(26), 17,386–17,389.

    CAS  Google Scholar 

  114. Vetrivel, K. S., Cheng, H., Lin, W., et al. (2004). Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes. J Biol Chem. 279(43), 44,945–44,954.

    Article  CAS  Google Scholar 

  115. Prasher, V. P., Farrer, M. J., Kessling, A. M. et al. (1998) Molecular mapping of Alzheimer-type dementia in Down’s syndrome. Ann Neurol. 43(3), 380–383.

    Article  PubMed  CAS  Google Scholar 

  116. Rosso, S., Bollati, F., Bisbal, M., et al. (2004) LIMK1 regulates Golgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons. Mol Biol Cell. 15(7), 3433–3449.

    Article  PubMed  CAS  Google Scholar 

  117. Knebl, J., DeFazio, P., Clearfield, M. B., et al. (1994). Plasma lipids and cholesterol esterification in Alzheimer’s disease. Mech Ageing Dev. 73(1), 69–77.

    Article  PubMed  CAS  Google Scholar 

  118. Frears, E. R., Stephens, D. J., Walters, C. E., Davies, H., and Austen, B. M. (1999). The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport 10(8), 1699–1705.

    Article  PubMed  CAS  Google Scholar 

  119. Sawamura, N., Morishima-Kawashima, M., Waki, H., et al. (2000). Mutant presenilin 2 transgenic mice. A large increase in the levels of Abeta 42 is presumably associated with the low density membrane domain that contains decreased levels of glycerophospholipids and sphingomyelin. J Biol Chem. 275(36), 27,901–27,908.

    CAS  Google Scholar 

  120. Runz, H., Rietdorf, J., Tomic, I., et al. (2002). Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J Neurosci. 22(5), 1679–1689.

    PubMed  CAS  Google Scholar 

  121. Burns, M., Gaynor, K., Olm, V., et al. (2003). Presenilin redistribution associated with aberrant cholesterol transport enhances beta-amyloid production in vivo. J Neurosci. 23(13), 5645–5649.

    PubMed  CAS  Google Scholar 

  122. Jin, L. W., Shie, F. S., Maezawa, I., Vincent, I., and Bird, T. (2004). Intracellular accumulation of amyloidogenic fragments of amyloidbeta precursor protein in neurons with Niemann-Pick type C defects is associated with endosomal abnormalities. Am J Pathol. 164(3), 975–985. Erratum in: Am J Pathol. 165(4), 1447.

    PubMed  CAS  Google Scholar 

  123. Cole, S. L., Grudzien, A., Manhart, I. O., Kelly, B. L., Oakley, H., and Vassar, R. (2005). Statins cause intracellular accumulation of amyloid precursor protein, beta-secretase-cleaved fragments, and amyloid beta-peptide via an isoprenoid-dependent mechanism. J Biol Chem. 280(19), 18,755–18,770.

    Article  CAS  Google Scholar 

  124. Cole, S. L. and Vassar, R. (2006). Isoprenoids and Alzheimer’s disease: A complex relationship. Neurobiol Dis. 22(2), 209–222.

    Article  PubMed  CAS  Google Scholar 

  125. Simons, M., Keller, P., De Strooper, B., Beyreuther, K., Dotti, C. G., and Simons, K. (1998). Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci U S A 95(11), 6460–6464.

    Article  PubMed  CAS  Google Scholar 

  126. Buxbaum, J. D., Geoghagen, N. S., and Friedhoff, L. T. (2001). Cholesterol depletion with physiological concentrations of a statin decreases the formation of the Alzheimer amyloid Abeta peptide. J Alzheimers Dis. 3(2), 221–229.

    PubMed  CAS  Google Scholar 

  127. Fassbender, K., Simons, M., Bergmann, C., et al. (2001). Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci U S A 98(10), 5856–5861.

    Article  PubMed  CAS  Google Scholar 

  128. Kojro, E., Gimpl, G., Lammich, S., Marz, W., and Fahrenholz, F. (2001). Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha -secretase ADAM 10. Proc Natl Acad Sci U S A. 98(10), 5815–5820.

    Article  PubMed  CAS  Google Scholar 

  129. Abad-Rodriguez, J., Ledesma, M. D., Craessaerts, K., et al. (2004). Neuronal membrane cholesterol loss enhances amyloid peptide generation. J Cell Biol. 167(5), 953–960.

    Article  PubMed  CAS  Google Scholar 

  130. Bodovitz, S. and Klein, W. L. (1996). Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein. J Biol Chem. 271(8), 4436–4440.

    Article  PubMed  CAS  Google Scholar 

  131. Racchi, M., Baetta, R., Salvietti, N., et al. (1997). Secretory processing of amyloid precursor protein is inhibited by increase in cellular cholesterol content. Biochem J. 322 (Pt 3), 893–898.

    PubMed  CAS  Google Scholar 

  132. Galbete, J. L., Martin, T. R., Peressini, E., Modena, P., Bianchi, R., and Forloni, G. (2000). Cholesterol decreases secretion of the secreted form of amyloid precursor protein by interfering with glycosylation in the protein secretory pathway. Biochem J. 348(Pt 2), 307–313.

    Article  PubMed  CAS  Google Scholar 

  133. Riddell, D. R., Christie, G., Hussain, I., and Dingwall, C. (2001). Compartmentalization of beta-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr Biol. 11(16), 1288–1293.

    Article  PubMed  CAS  Google Scholar 

  134. Cordy, J. M., Hussain, I., Dingwall, C., Hooper, N. M., and Turner, A. J. (2003). Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci U S A. 100(20), 11,735–11,740.

    Article  CAS  Google Scholar 

  135. Pedrini, S., Carter, T. L., Prendergast, G., Petanceska, S., Ehrlich, M. E., and Gandy, S. (2005). Modulation of statin-activated shedding of Alzheimer APP ectodomain by ROCK. PLoS Med. 2(1), e18, 0069–0078.

    Article  CAS  Google Scholar 

  136. Bi, X., Baudry, M., Liu, J., et al. (2004). Inhibition of geranylgeranylation mediates the effects of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors on microglia. J Biol Chem. 279(46), 48,238–48,245.

    Article  CAS  Google Scholar 

  137. Kato, T., Hashikabe, H., Iwata, C., Akimoto, K., and Hattori, Y. (2004). Statin blocks Rho/Rho-kinase signalling and disrupts the actin cytoskeleton: relationship to enhancement of LPS-mediated nitric oxide synthesis in vascular smooth muscle cells. Biochim Biophys Acta, 1689(3), 267–272.

    PubMed  CAS  Google Scholar 

  138. Ryder, J., Su, Y., Liu, F., Li, B., Zhou, Y., and Ni, B. (2003). Divergent roles of GSK3 and CDK5 in APP processing. Biochem Biophys Res Commun. 312(4), 922–929.

    Article  PubMed  CAS  Google Scholar 

  139. Vicent, D., Maratos-Flier, E., and Kahn, C. R. (2000). The branch point enzyme of the mevalonate pathway for protein prenylation is over-expressed in the ob/ob mouse and induced by adipogenesis. Mol Cell Biol. 20(6), 2158–2166.

    Article  PubMed  CAS  Google Scholar 

  140. Ridley, A. J. (2001). Rho proteins: linking signaling with membrane trafficking. Traffic 2(5), 303–310.

    Article  PubMed  CAS  Google Scholar 

  141. Beal, M. F. (2005). Mitochondria take center stage in aging and neurodegeneration. Ann Neurol. 58(4), 495–505.

    Article  PubMed  CAS  Google Scholar 

  142. Espisoto, L., Raber, J., Kekonius, L., et al. (2006). Reduction in mitochondrial superoxide dismutase modulates Alzheimer’s disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice. J. Neurosci. 26(19), 5167–5179.

    Article  CAS  Google Scholar 

  143. Bernstein, B. W., Chen, H., Boyle, J. A., and Bamburg, J. R. (2006). Formation of Actin-ADF/Cofilin rods transiently retards decline of mitochondrial potential and ATP in stressed neurons. Am. J. Physiol. Cell Physiol. 291, C828-C839.

    Article  PubMed  CAS  Google Scholar 

  144. Bowen, D. M., White, P., Spillane, J. A., et al. (1979). Accelerated ageing or selective neuronal loss as an important cause of dementia? Lancet 1(8106), 11–14.

    PubMed  CAS  Google Scholar 

  145. Hirai, K., Aliev, G., Nunomura, A., et al. (2001). Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci. 21(9), 3017–3023.

    PubMed  CAS  Google Scholar 

  146. Swerdlow, R. H. and Kish, S. J. (2002). Mitochondria in Alzheimer’s disease. Int Rev Neurobiol. 53, 341–385.

    Article  PubMed  CAS  Google Scholar 

  147. Lovell, M. A., Xiong, S., Markesbery, W. R., and Lynn, B. C. (2005). Quantitative proteomic analysis of mitochondria from primary neuron cultures treated with amyloid beta peptide. Neurochem Res. 30(1), 113–122.

    Article  PubMed  CAS  Google Scholar 

  148. Kondo, T., Shirasawa, T., Itoyama, Y., and Mori, H. (1996). Embryonic genes expressed in Alzheimer’s disease brains. Neurosci Lett. 209(3), 157–160.

    Article  PubMed  CAS  Google Scholar 

  149. Banerjee, J. and Ghosh, S. (2006). Phosphorylation of rat brain mitochondrial voltage-dependent anion as a potential tool to control leakage of cytochrome c. J Neurochem., Jun 19; 98, 670–676.

    Article  PubMed  CAS  Google Scholar 

  150. Chua, B. T., Volbracht, C., Tan, K. O., Li, R., Yu, V. C., and Li, P. (2003). Mitochondrial translocation of cofilin is an early step in apoptosis induction. Nat Cell Biol. 5(12), 1083–1089.

    Article  PubMed  CAS  Google Scholar 

  151. Yang, E., Kim, H., Lee, J., et al. (2004). Overexpression of LIM kinase 1 renders resistance to apoptosis in PC12 cells by inhibition of caspase activation. Cell Mol Neurobiol. 24(2), 181–192.

    Article  PubMed  CAS  Google Scholar 

  152. Gourlay C. W. and Ayscough, K. R., (2005). The actin cytoskeleton in ageing and apoptosis. FEMS Yeast Res 5(12), 1193–1198.

    Article  PubMed  CAS  Google Scholar 

  153. Gourlay, C. W., Carpp, L. N., Timpson, P., Winder, S. J., and Ayschough, K. R. (2004). A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol. 164(6), 803–809.

    Article  PubMed  CAS  Google Scholar 

  154. Gourlay, C. W. and Ayscough, K. R. (2005). A role for actin in aging and apoptosis. Biochem Soc Trans. 33(6), 1260–1264.

    Article  PubMed  CAS  Google Scholar 

  155. Gourlay, C. W. and Ayschogh, K. R. (2005). Identification of an upstream regulatory path way controlling actin-mediated apoptosis in yeast. J Cell Sci. 118(10), 2119–2132.

    Article  PubMed  CAS  Google Scholar 

  156. Tsujimoto, Y. and Shimizu, S. (2002). The voltage-dependent anion channel: an essential player in apoptosis. Biochimie 84, 187–193.

    Article  PubMed  CAS  Google Scholar 

  157. Zalk, R., Israelson, A., Garty, E. S., Azoulay-Zohar, H., and Shoshan-Barmatz, V. (2005). Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria. Biochem J. 386(Pt. 1), 73–83.

    Article  PubMed  CAS  Google Scholar 

  158. Koya, R. C., Fujita, H., Shimizu, S., et al. (2000). Gelsolin inhibits apoptosis by blocking mitochondrial membrane potential loss and cytochrome c release. J Biol Chem. 275(20), 15,343–15,349.

    Article  CAS  Google Scholar 

  159. Kusano, H., Shimizu, S., Koya, R. C., et al. (2000). Human gelsolin provents apoptosis by inhibiting apoptotic mitochondrial changes via closing VDAC. Oncogene 19(42), 4807–4814

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Bamburg.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12035-007-8011-y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maloney, M.T., Bamburg, J.R. Cofilin-mediated neurodegeneration in alzheimer’s disease and other amyloidopathies. Mol Neurobiol 35, 21–43 (2007). https://doi.org/10.1007/BF02700622

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02700622

Index Entries

Navigation