Skip to main content
Log in

Evolution of tidal creek networks in a high sedimentation environment: A 5-year experiment at Tijuana Estuary, California

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

In a large (8 ha) salt marsh restoration site, we tested the effects of excavating tidal creeks patterned after reference systems. Our purposes were to enhance understanding of tidal creek networks and to test the need to excavate creeks during salt marsh restoration. We compared geomorphic changes in areas with and without creek networks (n = 3; each area 1.3 ha) and monitored creek cross-sectional areas, creek lengths, vertical accretion, and marsh surface elevations for 5 yr that included multiple sedimentation events. We hypothesized that cells with creeks would develop different marsh surface and creek network characteristics (i.e., surface elevation change, sedimentation rate, creek cross-sectional area, length, and drainage density). Marsh surface vertical accretion averaged 1.3 cm yr−1 with large storm inputs, providing the opportunity to assess the response of the drainage network to extreme sedimentation rates. The constructed creeks initially filled due to high accretion rates but stabilized at cross-sectional areas matching, or on a trajectory toward, equilibrium values predicted by regional regression equations. Sedimentation on the marsh surface was greatest in low elevation areas and was not directly influenced by creeks. Time required for cross-sectional area stabilization ranged from 0 to > 5 yr, depending on creek order. First-order constructed creeks lengthened rapidly (mean rate of 1.3 m yr−1) in areas of low elevation and low vegetation cover. New (volunteer) creeks formed rapidly in cells without creeks in areas with low elevation, low vegetation cover, and high elevation gradient (mean rate of 6.2 m yr−1). After 5 yr, volunteer creeks were, at most, one-fourth the area of constructed creeks and had not yet reached the upper marsh plain. In just 4 yr, the site’s drainage density expanded from 0.018 to reference levels of 0.022 m m−2. Pools also formed on the marsh plain due to sediment resuspension associated with wind-driven waves. We conclude that excavated creeks jump-started the development of drainage density and creek and channel dimensions, and that the tidal prism became similar to those of the reference site in 4–5 yr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allen, J. R. L. 2000. Morphodynamics of Holocene salt marshes: A review sketch from the Atlantic and Southern North Sea coasts of Europe.Quaternary Science Reviews 19:1155–1231.

    Article  Google Scholar 

  • Bartholdy, J. 2000. Processes controlling import of fine-grained sediment to tidal areas: A simulation model, p. 13–30.In K. Pye and J. R. L. Allen (eds.), Coastal and Estuarine Environments: Sedimentology, Geomorphology, and Geoarchaeology, Volume 175. Geological Society, Special Publications, London, U.K.

  • Battalio, R. andB. DeTemple. 1998. The Preliminary Feasibility of a Conceptual Sediment Management and Enhancement Plan for Goat Canyon Creek. Philip Williams and Associates, Corte Madera, California.

    Google Scholar 

  • Bayliss-Smith, T. P., R. Healey, R. Lailey, T. Spencer, andD. R. Stoddart. 1979. Tidal flows in salt marsh creeks.Estuarine and Coastal Marine Science 9:235–255.

    Article  Google Scholar 

  • Boon, III,J. D. 1975. Tidal discharge asymmetry in a salt marsh drainage system.Limnology and Oceanography 20:71–80.

    Google Scholar 

  • Boumans, R. M. J. andJ. W. Day. 1993. High precision measurements of sediment elevation in shallow coastal areas using a sedimentation-erosion table.Estuaries 16:375–380.

    Article  Google Scholar 

  • Cahoon, D. R., J. C. Lynch, andA. N. Powell. 1996. Marsh vertical accretion in a southern California estuary, U.S.A.Estuarine Coastal and Shelf Science 43:19–32.

    Article  CAS  Google Scholar 

  • Cahoon, D. R. andR. E. Turner. 1989. Accretion and canal impacts in a rapidly subsiding wetland. II. Feldspar marker horizon technique.Estuaries 12:260–268.

    Article  Google Scholar 

  • Callaway, J. C. 2001. Hydrology and substrate, p. 89–118.In J. B. Zedler (ed.), Handbook for Restoring Tidal Wetlands. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Callaway, J. C., R. D. DeLaune, andW. H. Patrick, Jr. 1997. Sediment accretion rates from four coastal wetlands along the Gulf of Mexico.Journal of Coastal Research 13:181–191.

    Google Scholar 

  • Callaway, J. C., G. Sullivan, andJ. B. Zelder. 2003. Species-rich plantings increase biomass and nitrogen accumulation in a wetland restoration experiment.Ecological Applications 13: 1626–1639.

    Article  Google Scholar 

  • Callaway, J. C. andJ. B. Zedler. 2004. Restoration of urban salt marshes: Lessons from southern California.Urban Ecosystems 7:133–150.

    Article  Google Scholar 

  • Christiansen, T., P. L. Wiberg, andT. G. Milligan. 2000. Flow and sediment transport on a tidal salt marsh surface.Estuarine Coastal and Shelf Science 50:315–331.

    Article  Google Scholar 

  • Coats, R. N., P. G. Williams, C. K. Cuffe, J. B. Zedler, D. Reed, S. M. Waltry, and J. S. Stratton Noller. 1995. Design guidelines for tidal channels in coastal wetlands. Prepared for U.S. Army Corps of Engineers Waterways Experiment Station. Phillip Williams and Associates, Ltd. Report #934. San Francisco, California.

  • Cornu, C. andS. Sadro. 2002. Physical and functional responses to experimental marsh surface elevation manipulation in Coos Bay’s South Slough.Restoration Ecology 10:474–486.

    Article  Google Scholar 

  • Crooks, S. and K. Pye. 2000. Sedimentological controls on the erosion and morphology of salt marshes: Implications for flood defence and habitat recreation, p. 207–222.In K. Pye and J. R. L. Allen (eds.), Coastal and Estuarine Environments: Sedimentology, Geomorphology, and Geoarchaeology, Volume 175. Geological Society, Special Publications, London, U.K.

  • Crooks, S., J. Schutten, G. D. Sheern, K. Pye, andA. J. Davy. 2002. Drainage and elevation as factors in the restoration of salt marsh in Britain.Restoration Ecology 10:591–602.

    Article  Google Scholar 

  • D’Alpaos, A., S. Lanzoni, M. Marani, S. Fagherazzi, and A. Rinaldo. 2005. Tidal network ontogeny: Channel initiation and early development, Volume 110.Journal of Geophysical Research F02001, doi:10.1029/2004JF000182.

    Google Scholar 

  • Desmond, J. S., J. B. Zedler, andG. D. Williams. 2000. Fish use of tidal creek habitats in two southern California salt marshes.Ecological Engineering 14:233–252.

    Article  Google Scholar 

  • Eertman, R. H. M., B. A. Kornman, E. Stikvoort, andH. VerBeek. 2002. Restoration of the Sierperda tidal marsh in the Scheldt Estuary, the Netherlands.Restoration Ecology 10:438–449.

    Article  Google Scholar 

  • Elwany, H., D. Hansen, N. Marshall, R. McCreight, K. Marshall, and M. Jilka. 2003. Tijuana Estuary Model Marsh Sedimentation and Hydraulic Evaluation. Coastal Environments, CE No. 03-02, La Jolla, California.

  • Emmerson, R. H. C., J. M. A. Manatunge, C. L. Macleod, andJ. N. Lester. 1997. Tidal exchanges between Orplands managed retreat site and the Blackwater estuary, Essex.Journal of Water and Environmental Management 11:363–372.

    Article  CAS  Google Scholar 

  • Entrix Inc., Pacific Estuarine Research Laboratory and Philip Williams and Associates, Ltd. 1991. Tijuana Estuary tidal restoration program. Draft Environmental Impact Report and Environmental Impact Statement. Volume 1–3. State Coastal Conservacy, Oakland, California.

    Google Scholar 

  • Fagherazzi, S. andD. J. Furbish. 2001. On the shape and widening of salt marsh creeks.Journal of Geophysical Research 106:991–1003.

    Article  Google Scholar 

  • Fagherazzi, S., E. J. Gabet, andD. J. Furbish. 2004. The effect of bidirectional flow on tidal channel planforms.Earth Surface Processes and Landforms 29:295–309.

    Article  Google Scholar 

  • French, J. R. andT. Spencer. 1993. Dynamics of sedimentation in a tide-dominated backbarrier saltmarsh, Norfolk, U.K.Marine Geology 110:315–331.

    Article  Google Scholar 

  • French, J. R. andD. R. Stoddart. 1992. Hydrodynamics of salt marsh creek systems: Implications for marsh morphological development and material exchange.Earth Surface Processes and Landforms 17:235–252.

    Article  Google Scholar 

  • Friedrichs, C. T. andJ. E. Perry. 2001. Tidal salt marsh morphodynamics: A synthesis.Journal of Coastal Research 27:7–27.

    Google Scholar 

  • Gabet, E. J. 1998. Lateral migration and bank erosion in a salt marsh tidal channel in San Francisco Bay, California.Estuaries 21:745–753.

    Article  Google Scholar 

  • Garofalo, D. 1980. The influence of wetland vegetation on tidal stream channel migration and morphology.Estuaries 3:258–270.

    Article  Google Scholar 

  • Gee, G. W. andJ. W. Bauder. 1986. Particle-size analysis, p. 383–411.In A. Klute (ed.), Methods of Soil Analysis: Part I: Physical and Mineralogical Methods. American Society of Agronomy, Madison, Wisconsin.

    Google Scholar 

  • Greer, K. andD. Stow. 2003. Vegetation type conversion in Los Penasquitos Lagoon, California: An examination of the role of watershed urbanization.Environmental Management 31:489–503.

    Article  Google Scholar 

  • Haltiner, J., J. B. Zedler, K. E. Boyer, G. D. Williams, andJ. C. Callaway. 1997. Influence of physical processes on the design, functioning, and evolution of restored tidal wetlands in California (USA).Wetlands Ecology and Management 4:73–92.

    Article  Google Scholar 

  • Hatton, R. S., R. D. Delaune, andW. H. Patrick, Jr. 1983. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana.Limnology and Oceanography 28: 494–502.

    Article  Google Scholar 

  • Horton, R. E. 1945. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology.Bulletin of the Geological Society of America 56:275–370.

    Article  Google Scholar 

  • Keer, G. H. andJ. B. Zedler. 2002. Salt marsh canopy architecture differs with the number and composition of species.Ecological Applications 12:456–473.

    Article  Google Scholar 

  • Lawrence, D. S. L., J. R. L. Allen, andG. M. Havelock. 2004. Salt marsh morphodynamics: An investigation of tidal flows and marsh channel equilibrium.Journal of Coastal Research 20: 301–316.

    Article  Google Scholar 

  • Letzsch, W. S. andR. W. Frey. 1980. Deposition and erosion in a Holocene salt marsh, Sapelo Island, Georgia.Journal of Sedimentary Petrology 50:529–542.

    Google Scholar 

  • Madon, S. P., J. West, andJ. B. Zedler. 2002. Responses of fish to topographic heterogeneity in an experimental marsh (California).Ecological Restoration 20:56–58.

    Google Scholar 

  • Madon, S. P., G. D. Williams, J. M. West, andJ. B. Zedler. 2001. The importance of marsh access to growth of the California killifish,Fundulus parvipinnis, evaluated through bioenergetics modeling.Ecological Modelling 136:149–165.

    Article  Google Scholar 

  • Micheli, E. R. andJ. W. Kirchner. 2002. Effects of wet meadow riparian vegetation on streambank erosion.Earth Surface Processes and Landforms 27:687–697.

    Article  Google Scholar 

  • Minello, T. J., R. J. Zimmerman, andR. Medina. 1994. The importance of edge for natant macrofauna in a created salt marsh.Wetlands 14:184–198.

    Google Scholar 

  • Morris, R. K. A., I. S. Reach, M. J. Duffy, I. S. Collins, andR. N. Leafe. 2004. Forum: On the loss of saltmarshes in south-east England and the relationship withNereis diversicolor.Journal of Applied Ecology 41:787–791.

    Article  Google Scholar 

  • Morzaria-Luna, H. 2004. Determinants of plant species assemblages in the California marsh plain: Implications for restoration of ecosystem function. Ph.D. Dissertation, University of Wisconsin, Madison, Wisconsin.

    Google Scholar 

  • Morzaria-Luna, H., J. C. Callaway, G. Sullivan, andJ. B. Zedler. 2004. Relationships between topographic heterogeneity and vegetation patterns in a Californian salt marsh.Journal of Vegetation Science 14:523–530.

    Article  Google Scholar 

  • Munk, W. 2003. Ocean-freshening, sea level rising.Science 300: 2041–2043.

    Article  Google Scholar 

  • Myrick, R. M. andL. B. Leopold. 1963. Hydraulic geometry of a small tidal estuary. Geological survey professional paper 422-B:B1–B18. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • O’Brien, E. and J. B. Zedler. 2005. Accelerating the restoration of vegetation in a southern California salt marsh.Wetlands Ecology and Management in press.

  • Onuf, C. P. 1987. The Ecology of Mugu Lagoon, California: An Estuarine Profile. Biological, U.S. Department of Interior, Fish and Wildlife Service, National Wetlands Research Center, Report 85 (7.15). Washington, D.C.

  • Paramor, O. A. L. andR. G. Hughes. 2004. The effects of bioturbation and herbivory by the polychaeteNereis diversicolor on loss of saltmarsh in south-east England.Journal of Applied Ecology 41:449–463.

    Article  Google Scholar 

  • Perillo, G. M. E. 2003. new mechanisms studied for creek formation in tidal flats: From crabs to tidal channels.Eos Transactions American Geophysical Union 84:1–5.

    Article  Google Scholar 

  • Pestrong, R. 1965. The development of drainage patterns on tidal marshes.Stanford University Publications, Geological Sciences 10:1–87.

    Google Scholar 

  • Pestrong, R. 1972. Tidal-flat sedimentation at Cooley Landing, southwest San Francisco Bay.Sedimentary Geology 8:251–288.

    Article  Google Scholar 

  • Pethick, J. S. 1980. Velocity surges and asymmetry in tidal channels.Estuarine and Coastal Marine Science 11:331–345.

    Article  Google Scholar 

  • Pethick, J. S. 1981. Long-term accretion rates on tidal salt marshes.Journal of Sedimentary Petrology 51:571–577.

    Google Scholar 

  • Pethick, J. S. 1984. An Introduction to Coastal Geomorphology. Butler and Tanner Ltd, Frome Somerset, U.K.

    Google Scholar 

  • Postma, H. 1961. Transport and accumulation of suspended matter in the Dutch Wadden Sea.Netherlands Journal of Sea Research 1:148–190.

    Article  Google Scholar 

  • Pye, K. and J. R. L. Allen. 2000. Past, present, and future interactions, management challenges and research needs in coastal and estuarine environments, p. 1–4.In K. Pye and J. R. L. Allen (eds.), Coastal and Estuarine Environments: Sedimentology, Geomorphology, and Geoarchaeology, Volume 175. Geological Society, Special Publications, London, U.K.

  • Reed, D. J., T. Spencer, A. L. Murray, J. R. French, andL. Leonard. 1999. Marsh surface sediment deposition and the role of tidal creeks: Implications for created and managed coastal marshes.Journal of Coastal Conservation 5:81–90.

    Google Scholar 

  • Schoellhamer, D. H. 1996. Factors affecting suspended-solids concentrations in south San Francisco Bay, California.Journal of Geophysical Research 101:12087–12095.

    Article  Google Scholar 

  • Schostak, L. E., R. G. D. Davidson-Arnott, J. Ollerhead, and R. A. Kostaschuk. 2002. Patterns of flow and suspended sediment concentration in a macrotidal saltmarsh creek, Bay of Fundy, Canada, p. 59–74.In K. Pye and J. R. L. Allen (eds.), Coastal and Estuarine Environments: Sedimentology, Geomorphology and Geoarchaeology, Volume 175. Geological Society, Special Publications, London, U.K.

  • Shideler, G. L. 1984. Suspended sediment responses in a wind-dominated estuary of the Texas Gulf Coast.Journal of Sedimentary Petrology 54:731–745.

    Google Scholar 

  • Simenstad, C. A. andR. M. Thom. 1996. Functional equivalency trajectories of the restored Gog-Le-Hi-Te estuarine wetland.Ecological Applications 6:38–58.

    Article  Google Scholar 

  • Strahler, A. N. 1964. Quantitative geomorphology of drainage basins and channel networks, p. 439–476.In V. T. Chow (ed.), Handbook of Applied Hydrology. McGraw-Hill, New York.

    Google Scholar 

  • Thom, R. G., R. Zeigler, andA. B. Borde. 2002. Floristic development patterns in a restored Elk River estuarine marsh, Grays Harbor, Washington.Restoration Ecology 10:487–498.

    Article  Google Scholar 

  • Thorbjarnarson, K. andS. Stuart. 1998. Sediment grain size characterization for the Model Marsh region of the Tijuana Estuary. Department of Geological Sciences, San Diego State University, San Diego, California.

    Google Scholar 

  • Thrush, S. F., J. E. Hewitt, V. J. Cummings, J. I. Ellis, C. Hatton, A. Lohrer, andA. Norkko. 2004. Muddy waters: Elevating sediment input to coastal estuarine habitats.Frontiers in Ecology 2:299–306.

    Article  Google Scholar 

  • U.S. Army Corps of Engineers (USACE), Waterways Experiment Station. 1984. Shore protection manual. Volume 1. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Van Proosdij, D., J. Ollerhead, and R. G. D. David-Arnott. 2000. Controls on suspended sediment deposition over single tidal cycles in a macrotidal saltmarsh, Bay of Fundy, Canada, p. 43–58.In K. Pye and J. R. L. Allen (eds.), Coastal and Estuarine Environments: Sedimentology, Geomorphology and Geoarchaeology, Volume 175. Geological Society, Special Publications, London, U.K.

  • Vivian-Smith, G. 2001. Developing a framework for restoration, p. 39–88.In J. B. Zedler (ed.), Handbook for Restoring Tidal Wetlands. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Voulgaris, G. andS. Meyers. 2004. Temporal variability of hydrodynamics, sediment concentration and sediment settling velocity in a tidal creek.Continental Shelf Research 24:1659–1683.

    Article  Google Scholar 

  • Ward, K. M., J. C. Callaway, andJ. B. Zedler. 2003. Episodic colonization of an intertidal mudflat by native cordgrass (Spartina foliosa) at Tijuana Estuary.Estuaries 26:116–130.

    Article  Google Scholar 

  • Ward, L. G., W. W. Kemp, andW. R. Boynton. 1984. The influence of waves and seagrass communities on suspended particulates in an estuarine embayment.Marine Geology 10:85–103.

    Article  Google Scholar 

  • Weis, D. A., J. C. Callaway, andR. M. Gersberg. 2001. Vertical accretion rates and heavy metal chronologies in wetland sediment of the Tijuana Estuary.Estuaries 24:840–850.

    Article  CAS  Google Scholar 

  • Williams, G. D. andJ. S. Desmond. 2001. Restoring assemblages of invertebrates and fishes, p. 235–270.In J. B. Zedler (ed.), Handbook for Restoring Tidal Wetlands. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Williams, P. B. andM. K. Orr. 2002. Physical evolution of restored breached levee salt marshes in the San Francisco Bay estuary.Restoration Ecology 10:527–542.

    Article  Google Scholar 

  • Williams, P. B., M. K. Orr, andN. J. Garrity. 2002. Hydraulic geometry: A geomorphic design tool for tidal marsh channel evolution in wetland restoration projects.Restoration Ecology 10:577–590.

    Article  Google Scholar 

  • Zedler, J. B. 1982. The Ecology of Southern California Coastal Salt Marshes: A Community Profile. U.S. Fish and Wildlife Service, FWS/OBS-81/54, Washington, D.C.

  • Zedler, J. B. (ed.). 2001. Handbook for Restoring Tidal Wetlands. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Zedler, J. B., J. C. Callaway, andG. Sullivan. 2001. Declining biodiversity: Why species matter and how their functions might be restored in California tidal marshes.BioScience 51: 1005–1017.

    Article  Google Scholar 

  • Zedler, J. B., C. S. Nordby, andB. E. Kus. 1992. The Ecology of Tijuana Estuary: A National Estuarine Research Reserve. National Oceanic and Atmospheric Administration Office of Coastal Resource Management, Sanctuaries and Reserves Division, Washington, D.C.

    Google Scholar 

  • Zeff, M. L. 1999. Salt marsh tidal channel morphometry: Applications for wetland creation and restoration.Restoration Ecology 7:205–211.

    Article  Google Scholar 

Sources of Unpublished Materials

  • Elwany, H. unpublished data. Coastal Environments, Inc. 2166 Avenida de la Playa, Suite E, La Jolla, California 92037.

  • Haltiner, J. personal communication. Geomorphologist, Philip Williams and Associates, Inc. 720 California Street, 6th Floor, San Francisco, California 94108-2404.

  • Knox, J. unpublished data. PSA4, program for particle size analysis. Geomorphology Laboratory, Department of Geography, 550 N Park Street, Madison, Wisconsin 53706-1491.

  • Mickelson, D. personal communication. Department of Geology and Geophysics, University of Wisconsin, 1215 W Dayton Street, Madison, Wisconsin 53706-1692.

  • National Estuarine Reserve Centralized Data Management Office (NERR). 2005. unpublished data. cdmo.baruch.sc.edu/Maps/TJRMap.htm

  • San Diego-Lindbergh field, California. 1999–2002. unpublished data. Monthly average wind speeds. www.wrcc.dri.edu/htmlfiles/westwind.final.html

  • Ramsar. 2005. unpublished data. Ramsar list. www.ramsar.org.

  • Rick Engineering Inc. 2003. unpublished data. Digital imagery. 5620 Friars Road, San Diego, California 92110.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy B. Zedler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallace, K.J., Callaway, J.C. & Zedler, J.B. Evolution of tidal creek networks in a high sedimentation environment: A 5-year experiment at Tijuana Estuary, California. Estuaries 28, 795–811 (2005). https://doi.org/10.1007/BF02696010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02696010

Keywords

Navigation