Skip to main content
Log in

Auto-antibodies and autoreactive T-cells in rheumatoid arthritis

Pathogenetic players and diagnostic tools

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is not only the most severe of all joint diseases but also the most common systemic autoimmune disease affecting approximately 1% of the world-wide adult population. RA is characterized by the presence of autoantibodies in serum and synovial fluid distinguishing the disease from other arthritides such reactive arthritis or osteoarthritis. Since the historical description of rheumatoid factor (RF), which is an autoantibody directed to immunoglobulin G, numerous additional autoantibodies have been discovered in sera of RA patients. These antibodies may be directed to cartilage components, stress proteins, enzymes, nuclear proteins and, most importantly, citrullinated proteins suchas fibrin or vimentin. In contrast to other antibodies including RF, anti-citrullinated protein antibodies are targeted almost exclusively by RA patients thus being the most specific serological markers of RA. Even though most other antibodies are not used for diagnostics, they may contribute to the patholophysiology of RA by forming immune complexes in the joint. Furthermore, autoreactive T-cells in serum and synovial fluid may initiate or enhance the disease process via production of proinflammatory cytokines leading to autoantibody secretion, stimulation of macrophages and activation of bone resorbing osteoclasts. Identification of novel autoantigens, particularly citrullinated proteins, and the characterization of the cellular and molecular processes underlying the autoimmune reactions against them has provided new insights into the complex pathogenesis of RA. This has made possible the development of novel therapeutic concepts that may allow to treat the disease more effectively in its early stages where the chances are highest to interrupt the deleterious processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dorner, T., Egerer, K., Feist, E., and Burmester, G. R. (2004), Rheumatoid factor revisited. Curr Op Rheum 16(3), 246–253.

    Article  CAS  Google Scholar 

  2. Steiner, G. and Smolen, J. (2002), Autoantibodies in rheumatoid arthritis and their clinical significance. Arthritis Res 4(Suppl 2), S1-S5.

    Article  PubMed  Google Scholar 

  3. Vossenaar, E. R. and van Venrooij, W. J. (2004), Citrullinated proteins: sparks that may ignite the fire in rheumatoid arthritis. Arthritis Res Ther 6(3), 107–111.

    Article  PubMed  CAS  Google Scholar 

  4. Moore, T. L. and Dorner, R. W. (1993), Rheumatoid factors. Clin Biochem 26(2), 75–84.

    Article  PubMed  CAS  Google Scholar 

  5. Sutton, B., Corper, A., Bonagura, V., and Taussig, M. (2000), The structure and origin of rheumatoid factors. Immunol Today 21(4), 177–183.

    Article  PubMed  CAS  Google Scholar 

  6. Djavad, N., Bas, S., Shi, X., et al. (1996), Comparison of rheumatoid factors of rheumatoid arthritis patients, of individuals with myocobacterial infections and of normal controls: evidence for maturation in the absence of an autoimmune response. Eur J Immunol 26(10), 2480–2486.

    Article  PubMed  CAS  Google Scholar 

  7. Elagib, K. E., Borretzen, M., Jonsson R., et al. (1999), Kheumatoid factors in primary Sjogren’s syndrome (pSS) use diverse VH region genes, the majority of which show no evidence of somatic hypermutation. Clin Exp Immunol 117(2), 388–394.

    Article  PubMed  CAS  Google Scholar 

  8. Kyburz, D., Corr, M., Brinson, D. C., Von Damm, A., Tighe, H., and Carson, D. A. (1999), Human rheumatoid factor production is dependent on CD40 signaling and autoantigen. J Immunol 163(6), 3116–3122.

    PubMed  CAS  Google Scholar 

  9. Breitner, S., Storkel, S., Reichel, W., and Loos, M. (1995), Complement components C1q, C1r/C1s, and C1INH in rheumatoid arthritis. Correlation of in situ hybridization and northern blot results with function and protein concentration in synovium and primary cell cultures. Arthritis Rheum 38(4), 492–498.

    Article  PubMed  CAS  Google Scholar 

  10. Jansen, A. L., van der Horst-Bruinsma, I., van Schaardenburg, D., van de Stadt, R. J., de Koning, M. H., and Dijkmans, B. A. (2002), Rheumatoid factor and antibodies to cyclic citrullinated Peptide differentiate rheumatoid arthritis from undifferentiated polyarthritis in patients with early arthritis. J Rheumatol 29(10), 2074–2076.

    PubMed  Google Scholar 

  11. Nell, V., Machold, K. P., Stamm, T. A. et al. (2005), Autoantibody profiling as early diagnostic and prognostic tool for rheumatoid arthritis. Ann Rheum Dis 64(12), 1731–1736.

    Article  PubMed  CAS  Google Scholar 

  12. Nielen, M. M. J., van Schaardenburg, D., Reesink, H. W. R., et al. (2004), Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurments in blood donors. Arthritis Rheum 50(2), 380–386.

    Article  PubMed  Google Scholar 

  13. Rantapaa-Dahlqvist, S., de Jong, B. A., Berglin, E. et al. (2003), Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. [see comment], Arthritis Rheum 48(10), 2741–2149.

    Article  PubMed  CAS  Google Scholar 

  14. Bas, S., Genevay, S., Meyer, O., and Gabay, C. (2003), Anti-cyclic citrullinated peptide antibodies, IgM and IgA rheumatoid factors in the diagnosis and prognosis of rheumatoid arthritis. Rheumatology 42(5), 677–680.

    Article  PubMed  CAS  Google Scholar 

  15. Greiner, A., Plischke, H., Kellner, H., and Gruber, R. (2005), Association of anti-cyclic citrullinated peptide antibodies, anti-citrullin antibodies, and IgM and IgA rheumatoid factors with serological parameters of disease activity in rheumatoid arthritis. Ann NY Acad Sci, 1050, 295–303.

    Article  PubMed  CAS  Google Scholar 

  16. Jonsson, T., Steinsson, K., Jonsson, H., Geirsson, AJ., Thorsteinsson, J., and Valdimarsson, H. (1998), Combined elevation of IgM and IgA rheumatoid factor has high diagnostic specificity for rheumatoid arthritis. Rheumatol Int, 18(3), 119–122.

    Article  PubMed  CAS  Google Scholar 

  17. Lindqvist, E., Eberhardt, K., Bendtzen, K., Heinegard, D., and Saxne, T. (2005), Prognostic laboratory markers of joint damage in rheumatoid arthritis. Ann Rheum Dis 64(2), 196–201.

    Article  PubMed  CAS  Google Scholar 

  18. Scott, D. L. (2000), Prognostic factors in early rheumatoid arthritis. Rheumatology (39), 124–129.

    Google Scholar 

  19. Simon, M., Girbal, E., Sebbag, M., et al. (1993). The cytokeratin filament-aggregating protein filaggrin is the target of the so-called “antikeratin antibodies,” autoantibodies specific for rheumatoid arthritis. J Clin Invest 92(3), 1387–1393.

    PubMed  CAS  Google Scholar 

  20. Youinou, P. and Serre, G. (1995), The antiperinuclear factor and antikeratin antibody systems. Int Arch Allergy Immunol 107(4), 508–518.

    PubMed  CAS  Google Scholar 

  21. Ishida Yamamoto, A., Tanaka, H., Nakane, H., Takahashi, H., Hashimoto, Y., and Iizuka, H. (1999), Programmed cell death in normal epidermis and loricrin keratoderma. Multiple functions of profilaggrin in keratinization. J Investig Dermatol Symp Proc 4 (2), 145–149.

    Article  PubMed  CAS  Google Scholar 

  22. Girbal Neuhauser, E., Durieux, J. J., Arnaud, M., et al. (1999), The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin autoantibodies are posttranslationally generated on various sites of (pro)filaggrin by deimination of arginine residues. J Immunol 162(1), 585–594.

    PubMed  CAS  Google Scholar 

  23. Schellekens, G. A., de Jong, B. A., van den Hoogen, F. H., van de Putte, L. B., and van Venrooij, W. J. (1998), Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Clin Invest 101(1), 273–281.

    Article  PubMed  CAS  Google Scholar 

  24. Union, A., Meheus, L., Humbel, R. L., et al. (2002), Identification of citrullinated rheumatoid arthritis-specific epitopes in natural filaggrin relevant for antifilaggrin autoantibody detection by LINE immunoassay. Arthritis Rheum 46(5), 1185–1193.

    Article  PubMed  CAS  Google Scholar 

  25. Schellekens, G. A., Visser, H., de Jong, B. A., et al. (2000) The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum 43(1), 155–163.

    Article  PubMed  CAS  Google Scholar 

  26. Masson-Bessiere, C., Sebbag, M., Girbal-Neuhauser, E., et al. (2001), The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the alpha- and beta-chains of fibrin. J Immunol 166(6) 4177–4184.

    PubMed  CAS  Google Scholar 

  27. Chapuy-Regaud, S., Sebbag, M., Baeten, D., et al. (2005), Fibrin deimination in synovial tissue is not specific for rheumatoid arthritis but commonly occurs during synovitides. J Immunol 174(8), 5057–5064.

    PubMed  CAS  Google Scholar 

  28. Vossenaar, E. R., Smeets, T. J., Kraan, M. C., Raats, J. M., van Venrooij, W. J. and Tak, P. P. (2004), The presence of citrullinated proteins is not specific for rheumatoid synovial tissue. Arthritis Rheum 50(11), 3485–3494.

    Article  PubMed  CAS  Google Scholar 

  29. Nielen, M. M., van der Horst, A. R., van Schaardenburg, D., et al. (2005), Antibodies to citrullinated human fibrinogen (ACF) have diagnostic and prognostic value in early arthritis. Ann Rheum Dis 64(8), 1199–1204.

    Article  PubMed  CAS  Google Scholar 

  30. De Rycke, L., Nicholas, A. P., Cantaert, T., et al. (2005), Synovial intracellular citrullinated proteins colocalizing with peptidyl arginine deiminase as pathophysiologically relevant antigenic determinants of rheumatoid arthritis-specific humoral autoimmunity. Arthritis Rheum 52(8), 2323–2330.

    Article  PubMed  CAS  Google Scholar 

  31. Masson-Bessiere, C., Sebbag, M., Durieux, J. J., et al. (2000), In the rheumatoid pannus, anti-filaggrin autoantibodies are produced by local plasma cells and constitute a higher proportion of IgG than in synovial fluid and serum. Clin Exp Immunol 119(3), 544–552.

    Article  PubMed  CAS  Google Scholar 

  32. Jansen, L. M., van Schaardenburg, D., van der Horst-Bruinsma, I., van der Stadt, R. J., de Koning, M. H., and Dijkmans, B. A. (2003), The predictive value of anti-cyclic citrullinated peptide antibodies in early arthritis. J Rheumatol 30(8), 1691–1695.

    PubMed  CAS  Google Scholar 

  33. van Gaalen, F. A., Linn-Rasker, S. P., van Venrooij, W. J., et al. (2004a), Autoantibodies to cyclic citrullinated peptides predict progression to rheumatoid arthritis in patients with undifferentiated arthritis: a prospective cohort study. Arthritis Rheum 50(3), 709–715.

    Article  PubMed  CAS  Google Scholar 

  34. Visser, H., le Cessie, S., Vos, K., Breedveld, F. C., and Hazes, J. M. (2002), How to diagnose rheumatoid arthritis early: a prediction model for persistent (erosive) arthritis. Arthritis Rheum 46(2), 357–365.

    Article  PubMed  Google Scholar 

  35. Kastbom, A., Strandberg, G., Lindroos, A., and Skogh, T. (2004), Anti-CCP antibody test predicts the disease course during 3 years in early rheumatoid arthritis (the Swedish TIRA project). Ann Rheum Dis 63(9), 1085–1089.

    Article  PubMed  CAS  Google Scholar 

  36. Meyer, O., Labarre, C., Dougados, M., et al. (2003), Anticitrullinated protein/peptide antibody assays in early rheumatoid arthritis for predicting five year radiographic damage. Ann Rheum Dis 62(2), 120–126.

    Article  PubMed  CAS  Google Scholar 

  37. Berglin, E., Padyukov, L., Sundin, U., et al. (2004) A combination of autoantibodies to cyclic citrullinated peptide (CCP) and HLA-DRB1 locus antigens is strongly associated with future onset of rheumatoid arthritis. Arthritis Res Ther 6(4), R303-R308.

    Article  PubMed  CAS  Google Scholar 

  38. van Gaalen, F. A., van Aken, J., Huizinga, T. W., et al. (2004c), Association between HLA class II genes and autoantibodies to cyclic citrullinated peptides (CCPs) influences the severity of rheumatoid arthritis. Arthritis Rheum 50(7), 2113–2121.

    Article  PubMed  CAS  Google Scholar 

  39. Steiner, G., Skriner, K., and Smolen, J. S. (1996), Autoantibodies to the A/B proteins of the heterogeneous nuclear ribonucleoprotein complex: novel tools for the diagnosis of rheumatic diseases. Int Arch Allergy Immunol 111(4), 314–319.

    Article  PubMed  CAS  Google Scholar 

  40. Fritsch, R., Eselböck, D., Skriner, K., Jahn-Schmid, B., et al. (2002), Characterization of autoreactive T cells to the autoantigens RA33 (hnRNP A2) and filaggrin in patients with rheumatoid arthritis. J Immunol 169, 1068–1076.

    PubMed  CAS  Google Scholar 

  41. Hayer, S., Tohidast-Akrad, M., Haralambous, S., et al. (2005), Aberrant expression of the autoantigen heterogeneous nuclear ribonucleoprotein-A2 (RA33) and spontaneous formation of rheumatoid arthritis-associated anti-RA33 autoantibodies in TNF-alpha transgenic mice. J Immunol 175(12), 8327–8336.

    PubMed  CAS  Google Scholar 

  42. Kamma, H., Horiguchi, H., Wan, L., et al. (1999), Molecular characterization of the hnRNP A2/B1 proteins: tissue-specific expression and novel isoforms. Exp Cell Res 246(2), 399–411.

    Article  PubMed  CAS  Google Scholar 

  43. Hassfeld, W., Steiner, G., Studnicka Benke, A., et al. (1995), Autoimmune response to the spliceosome. An immunologic link between rheumatoid arthritis, mixed connective tissue disease, and systemic lupus erythematosus. Arthritis Rheum 38(6) 777–785.

    Article  PubMed  CAS  Google Scholar 

  44. Plows, D., Kontogeorgos, G., and Kollias, G. (1999), Mice lacking mature T and B lymphocytes develop arthritic lesions after immunization with type II collagen. J Immunol 162(2), 1018–1023.

    PubMed  CAS  Google Scholar 

  45. Burkhardt, H., Sehnert, B., Bockermann, R., Engstrom, A., Kalden, J. R., and Holmdahl, R. (2005), Humoral immune response to citrullinated collagen type II determinants in early rheumatoid arthritis. Eur J Immunol 35(5), 1643–1652.

    Article  PubMed  CAS  Google Scholar 

  46. Suzuki, A., Yamada, R., Ohtake-Yamanaka, M., Okazaki, Y., Sawada, T., and Yamamoto, K. (2005), Anti-citrullinated collagen type I antibody is a target of autoimmunity in rheumatoid arthritis. Biochem Biophys Res Comm 333(2), 418–426.

    Article  PubMed  CAS  Google Scholar 

  47. Cook, A. D., Rowley, M. J., Mackay, I. R., Gough, A., and Emery, P. (1996), Antibodies to type II collagen in early rheumatoid arthritis. Correlation with disease progression. Arthritis Rheum 39(10), 1720–1727.

    Article  PubMed  CAS  Google Scholar 

  48. Zugel, U., and Kaufmann, S. H. (1999), Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clin Microbiol Rev 12(1), 19–39.

    PubMed  CAS  Google Scholar 

  49. Bodman-Smith, M. D., Corrigall, V. M., Berglin, E., et al. (2004), Antibody response to the human stress protein BiP in rheumatoid arthritis. Rheumatology 43(10), 1283–1287.

    Article  PubMed  CAS  Google Scholar 

  50. Tishler, M. and Shoenfeld, Y. (1996), Anti-heat-shock protein antibodies in rheumatic and autoimmune diseases. Semin Arthritis Rheum 26(2), 558–563.

    Article  PubMed  CAS  Google Scholar 

  51. Barker, R. N., Wells, A. D., Ghoraishian, M., et al. (1996), Expression of mammalian 60-kD heat shock protein in the joints of mice with pristane-induced arthritis. Clin Exp Immunol 103(1), 83–88.

    PubMed  CAS  Google Scholar 

  52. Schett, G., Redlich, K., Xu, Q., et al. (1998), Enhanced expression of heat shock protein 70 (hsp70) and heat shock factor 1 (HSF1) activation in rheumatoid arthritis synovial tissue. Differential regulation of hsp70 expression and hsf1 activation in synovial fibroblasts by proinflammatory cytokines, shear stress, and antiinflammatory drugs. J Clin Invest 102(2), 302–311.

    PubMed  CAS  Google Scholar 

  53. Panayi, G. S. and Corrigall, V. M. (2006), BiP regulates autoimmune inflammation and tissue damage. Autoimmun Rev 5(2), 140–142.

    Article  PubMed  CAS  Google Scholar 

  54. van Eden, W. (2006), Immunoregulation of autoimmune diseases. Human Immunol 67(6), 446–453.

    Article  CAS  Google Scholar 

  55. Prakken, B. J., Roord, S., Ronaghy, A., Wauben, M., Albani, S., and van Eden, W. (2003), Heat shock protein 60 and adjuvant arthritis: a model for T cell regulation in human arthritis. Springer Sem Immunopathol 25(1), 47–63.

    Article  CAS  Google Scholar 

  56. Kyburz, D., and Corr, M. (2003), The KRN mouse model of inflammatory arthritis. Springer Semin Immunopathol 25(1), 79–90.

    Article  PubMed  CAS  Google Scholar 

  57. Benoist, C. and Mathis, D. (2000), A revival of the B cell paradigm for rheumatoid arthritis pathogenesis. Arthritis Res 2(2), 90–94.

    Article  PubMed  CAS  Google Scholar 

  58. Matsumoto, I., Maccioni, M., Lee, D. M., et al. (2002), How antibodies to a ubiquitous cytoplasmic enzyme may provoke joint-specific autoimmune disease. Nat Immunol 3(4), 360–365.

    Article  PubMed  CAS  Google Scholar 

  59. Kamradt, T. and Schubert, D. (2005), The role and clinical implications of G6PI in experimental models of rheumatoid arthritis. Arthritis Res Ther 7(1), 20–28.

    Article  PubMed  CAS  Google Scholar 

  60. Schubert, D., Maier, B., Morawietz, L., Krenn, V. and Kamradt, T. (2004), Immunization with glucose-6-phosphate isomerase induces T cell-dependent peripheral polyarthritis in genetically unaltered mice. J Immunol 172(7), 4503–4509.

    PubMed  CAS  Google Scholar 

  61. Kassahn, D., Kolb, C., Solomon, S., Bochtler, P., and Illges, H. (2002), Few human autoimmune sera detect GPI. Nature Immunol 3(5), 411–412.

    Article  CAS  Google Scholar 

  62. Matsumoto, I., Lee, D. M., Goldbach-Mansky, R., et al. (2003), Low prevalence of antibodies to glacose-6-phosphate isomerase in patients with rheumatoid arthritis and a spectrum of other chronic autoimmune disorders. Arthritis Rheum 48(4), 944–954.

    Article  PubMed  CAS  Google Scholar 

  63. van Gaalen, F. A., Toes, R. E., Ditzel, H. J., et al. (2004b), Association of autoantibodies to glucose-6-phosphate isomerase with extraarticular complications in rheumatoid arthritis. Arthritis Rheum 50(2), 395–399.

    Article  PubMed  CAS  Google Scholar 

  64. Iwaki-Egawa, S., Matsuno, H., Yudoh, K., et al. (2004), High diagnostic value of anticalpastatin autoantibodies in rheumatoid arthritis detected by ELISA using human erythrocyte calpastatin as antigen. J Rheumatol 31(1), 17–22.

    PubMed  CAS  Google Scholar 

  65. Menard, H. A. and el Amine, M. (1996), The calpain-calpastatin system in rheumatoid arthritis. Immunol Today 17(12), 545–547.

    Article  PubMed  CAS  Google Scholar 

  66. Vincent, C., Nogueira, L., Clavel, C., Sebbag, M. and Serre, G. (2005), Autoantibodies to citrullinated proteins: ACPA. Autoimmunity 38(1), 17–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, G. Auto-antibodies and autoreactive T-cells in rheumatoid arthritis. Clinic Rev Allerg Immunol 32, 23–35 (2007). https://doi.org/10.1007/BF02686079

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02686079

Index Entries

Navigation