Skip to main content
Log in

Membrane-associated phosphoinositides-specific phospholipase C forms from Catharanthus roseus transformed roots

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

We have previously reported that Catharanthus roseus transformed roots contain at least two phosphatidylinositol 4,5-bisphosphate-phospholipase C (PLC) activities, one soluble and the other membrane associated. Detergent, divalent cations, and neomycin differentially regulate these activities and pure protein is required for a greater understanding of the function and regulation of this enzyme. In this article we report a partia purification of membrane-associated PLC. We found that there are at least two forms of membrane-associated PLC in transformed roots of C. roseus. These forms were separated on the basis of their affinity for heparin. One form shows an affinity for heparin and elutes at approx 600 mM KCl. This form has a molecular mass of 67 kDa by size exclusion chromatography and Western blot analysis, whereas the other form does not bind to heparin and has a molecular mass of 57 kDa. Possible differential regulation of these forms during transformed root growth is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berridge, M. J. (1993) Inositol trisphosphate and calcium signaling. Nature 361, 315–325.

    Article  PubMed  CAS  Google Scholar 

  2. Dekker, L. V., Palmer, R. H., and Parker, P. J. (1995) The protein kinase C and protein kinase A related gene families. Curr. Opin. Struct. Biol. 5, 396–402.

    Article  PubMed  CAS  Google Scholar 

  3. Katan, M. (1998) Families of phosphoinositide-specific phospholipase C: structure and function. Biochim. Biophys. Acta 1436, 5–17.

    PubMed  CAS  Google Scholar 

  4. Jones, G. and Carpenter, G. (1992) Regulation of phospholipase C isozymes. Prog. in Growth Factor Res. 4, 97–106.

    Article  CAS  Google Scholar 

  5. Shukla, S. D. (1982) Phosphatidylinositol specific phospholipase C. Life Sci. 30, 1323–1326.

    Article  PubMed  CAS  Google Scholar 

  6. Rhee, S. G. (2001) Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70, 281–312.

    Article  PubMed  CAS  Google Scholar 

  7. Saunders, C. M., Larman, M. G., Parrington, J., et al. (2002) PLCζ: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 129, 3533–3544.

    PubMed  CAS  Google Scholar 

  8. Nomikos, M., Blayney, L. M., Larman, M. G., et al. (2005) Role of phospholipase C-ζ domains in Ca2+-dependent phosphatidylinositol 4.5-bisphosphate hydrolysis and cytoplasmic Ca2+ oscillations. J. Biol. Chem. 280, 31,011–31,018.

    Article  CAS  Google Scholar 

  9. Rebecchi, M. J. and Pentyala, S. N. (2000) Structure function, and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 80, 1291–1335.

    PubMed  CAS  Google Scholar 

  10. Stevenson, J. M., Perera, I. Y., Heilmann, I., Persson, S., and Boss, W. F. (2000) Inositol signaling and plant growth. Trends Plant Sci. 5, 252–258.

    Article  PubMed  CAS  Google Scholar 

  11. Wang, X. (2001) Plant phospholipases. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 211–231.

    Article  PubMed  CAS  Google Scholar 

  12. Meijer, H. J. G. and Munnik, T. (2003) Phospholipid-based signaling in plants. Annu. Rev. Plant Biol. 54, 265–306.

    Article  PubMed  CAS  Google Scholar 

  13. Lehle, L. (1990) Phosphatidylinositol metabolism and its role in signal transduction in growing plants. Plant Mol. Biol. 15, 647–658.

    Article  PubMed  CAS  Google Scholar 

  14. Coté, G. G. and Crain, R. C. (1993) Biochemistry of phosphoinositides. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 333–356.

    Article  Google Scholar 

  15. Gross, W. and Boss, W. F. (1993) Inositol phospholipids and signal transduction. in: Control of Plant Gene Expression (Verma, D. P. S., ed.). CRC Press, Boca Raton, FL, pp. 17–32.

    Google Scholar 

  16. Scherer, G. F. E. (1996) Phospholipid signalling and lipid-derived second messengers in plants. Plant Growth Reg. 18, 125–133.

    Article  CAS  Google Scholar 

  17. Munnik, T., Irvine, R. F., and Musgrave, A. (1998) Phospholipid signalling in plants. Biochim. Biophys. Acta 1389, 222–272.

    Google Scholar 

  18. Huang, C. H., Tate, B. F., Crain, R. C., and Coté, G. G. (1995) Multiple phosphoinositide-specific phospholipase C in oat roots: characterization and partial purification. Plant J. 8, 257–267.

    Article  Google Scholar 

  19. Melin, P., Pical, C., Jergil, B., and Sommarin, M. (1992) Polyphosphoinositide phospholipase C in wheat root plasma membranes. Partial purification and characterization. Biochim. Biophys. Acta 1123, 163–169.

    PubMed  CAS  Google Scholar 

  20. Yotsushima, K., Nakamura, K., Mitsui, T., and Igane, I. (1992) Purification and characterization of phosphatidylinositol-specific phospholipase C in suspension-cultured cells of rice (Oryza sativa L.). Biosci. Biotech. Biochem. 56, 1247–1251.

    Article  CAS  Google Scholar 

  21. Yotsushima, K., Mitsui, T., Takoaka, T., Hayakawa, T., and Igane, I. (1993) Purification and characterization of membrane-bound inositol phospholipid-specific phospholipase C from suspension-cultured rice (Oryza sativa L.) cells. Plant Physiol. 102, 165–172.

    PubMed  CAS  Google Scholar 

  22. Shi, J., Gonzales, R. A., and Bhattacharyya, M. K. (1995) Characterization of a plasma membrane-associated phosphoinositide-specific phospholipase C from soybean. Plant J. 8, 381–390.

    Article  PubMed  CAS  Google Scholar 

  23. Park, S. K., Lee, J. R., Lee, S. S., et al. (2002) Partial purification and properties of a phosphatidylinositol 4,5-bisphosphate hydrolyzing phospholipase C from the soluble fraction of soybean sprouts. Mol. Cells 13, 377–384.

    PubMed  CAS  Google Scholar 

  24. Yamamoto, Y. T., Conkling, M. A., Sussex, I. M., and Irish, V. F. (1995) An Arabidopsis cDNA related to animal phosphoinositide-specific phospholipase C genes. Plant Physiol. 107, 1029–1030.

    Article  PubMed  CAS  Google Scholar 

  25. Hirayama, T., Ohto, C., Mizoguchi, T., and Shinozaki, K. (1995) A gene encoding phosphoinositide-specific phospholipase C is induced by dehydratation and salt stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 92, 3903–3907.

    Article  PubMed  CAS  Google Scholar 

  26. Hirayama, T., Mitsukawa, N., Shibata, D., and Shinozaki, K. (1997) At-PLC2, a gene encoding phosphoinositide-specific phospholipase C, is constitutively expressed in vegetative and floral tissues in Arabidopsis thaliana. Plant Mol. Biol. 34, 175–180.

    Article  PubMed  CAS  Google Scholar 

  27. Shi, J., Dixon, R. A., Gonzales, R. A., Kjellbom, P., and Bhattacharyya, M. K. (1995) Identification of cDNA clones encoding valosin-containing protein and other plant plasma membrane associated proteins by a general immunoscreening strategy. Proc. Natl. Acad. Sci. USA 92, 4457–4461.

    Article  PubMed  CAS  Google Scholar 

  28. Kopka, J., Pical, C., Gray, J. E., and Muller-Rober, B. (1998) Molecular and enzymatic characterization of three phosphoinositide-specific phospholipase C isoforms from potato. Plant Physiol. 116, 239–250.

    Article  PubMed  CAS  Google Scholar 

  29. Chapman, K. D. (1998) Phospholipase activity during plant growth and development and in response to environmental stress. Trends Plant Sci. 3, 419–426.

    Article  Google Scholar 

  30. Kashem, M. A., Itoh, K., Iwabuchi, S., Hori, H., and Mitsui, T. (2000) Possible involvements of phosphoinositide-Ca2+ signaling in the regulation of α-amylase expression and germination of rice seed (Oryza sativa L.). Plant Cell Physiol. 41, 399–407.

    PubMed  CAS  Google Scholar 

  31. Hernández-Sotomayor, S. M. T., De Los Santos-Briones, C., Muñoz-Sánchez, J. A., Piña-Chablé, M. L., and Loyola-Vargas, V. M. (1997) Phospholipase C in Catharanthus roseus-transformed roots, in: Radical Biology: Advances and Perspectivas on the Function of Plants Roots, Current Topics in Plant Physiology, (Flores, H. E., Lynch, J. P., and Eissenstat, D., eds.). American Society of Plant Physiologists, Rockville, Maryland, pp. 422–425.

    Google Scholar 

  32. Legendre, L., Yueh, Y. G., Crain, R., Haddock, N., Heinsten, P. F., and Low, P. S. (1993) Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. J. Biol. Chem. 268, 24,559–24,563.

    CAS  Google Scholar 

  33. Cho, M. H., Tan, Z., Erneux, C., Shears, S. B., and Boss, W. F. (1995) The effects of mastoparan on the carrot cell plasma membrane polyphosphoinositide phospholipase C. Plant Physiol. 107, 845–856.

    Article  PubMed  CAS  Google Scholar 

  34. Pingret, J.-L., Journet, E.-P., and Barrer, D. G. (1998) Rhizobium nod factor signalling: evidence for a G protein-mediated transduction mechanism. Plant Cell 10, 659–671.

    Article  PubMed  CAS  Google Scholar 

  35. Suárez-Solis, V. M., Carrillo-Pech, M., Muñoz-Sánchez, J. A., Coria-Ortega, R., and Hernández-Sotomayor, S. M. T. (1999) Presence of guanine-nucleotide-binding proteins in Catharanthus roseus transformed roots. Physiol. Plant 105, 593–599.

    Article  Google Scholar 

  36. Assmann, S. M. (2002) Heterotrimeric and unconventional GTP binding proteins in plant cell signalling. Plant Cell 14, S355-S373.

    PubMed  CAS  Google Scholar 

  37. Assmann, S. M. (2005) G proteins go green: a plant G protein signaling FAQ sheet. Science 310, 71–73.

    Article  PubMed  CAS  Google Scholar 

  38. De los Santos-Birones, C., Muñoz-Sánchez, J. A., Chín-Vera, J., Loyola-Vargas, V. M., and Hernández-Sotomayor, S. M. T. (1997) Phosphatidylinositol 4,5-bisphosphate-phospholipase C activity during the growing phase of Catharanthus roseus transformed roots. J. Plant Physiol. 150, 707–713.

    Google Scholar 

  39. Piña-Chable, M. L., De Los Santos-Briones, C., Muñoz-Sánchez, J. A., Echevarría Machado, I., and Hernández-Sotomayor, S. M. T. (1998) Effect of different inhibitors on phospholipase C activity in Catharanthus roseus transformed roots. Prostaglandins and other Lipid Mediators 56, 19–31.

    PubMed  Google Scholar 

  40. Piña-Chable, M. L. and Hernández-Sotomayor, S. M. T. (2001) Phospholipase C activity from Catharanthus roseus transformed roots: aluminum effects. Prostaglandins and other Lipid Mediators 65, 45–56.

    Article  PubMed  Google Scholar 

  41. Hernández-Sotomayor, S. M. T., De Los Santos-Briones, C., Muñoz-Sánchez, J. A., and Loyola-Vargas, V. M. (1999) Kinetic analysis of phospholipase C from Catharanthus roseus transformed roots using different assay. Plant Physiol. 120, 1075–1081.

    Article  PubMed  Google Scholar 

  42. Waldo, G. L., Morris, A. J., and Harden, T. K. (1994) Purification of G-protein-regulated phospholipase C from turkey erythrocytes. Methods Enzymol. 238, 195–207.

    Article  PubMed  CAS  Google Scholar 

  43. Ciau-Uitz, R., Miranda-Ham, M. L., Coello-Coello J., Chí, B., Pacheco, L. M., and Loyola-Vargas, V. M. (1994) Indole alkaloid production by transformed and non-transformed root cultures of Catharanthus roseus. In Vitro Cell Dev. Biol. 30, 84–88.

    Article  Google Scholar 

  44. Gamborg, O. L., Miller, R. A., and Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean roots cells. Exp. Cell Res. 50, 151–158.

    Article  PubMed  CAS  Google Scholar 

  45. Peterson, G. L. (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83, 346–356.

    Article  PubMed  CAS  Google Scholar 

  46. Laemmli, U. K. (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  47. Hata, A., Ridinger, D. N., Sutherland, S., et al. (1993) Binding of lipoprotein lipase to heparin. Identification of five critical residues in two distinct segments of the amino-terminal domain. J. Biol. Chem. 268, 8447–8457.

    PubMed  CAS  Google Scholar 

  48. Cifuentes, M. E., Homkanen, L., and Rebecchi, M. J. (1993) Proteolytic fragments of phosphoinositidespecific phospholipase C-δ1. Catalytic and membrane binding properties. J. Biol. Chem. 268, 11586–11593.

    PubMed  CAS  Google Scholar 

  49. Fernald, A. W., Jones, G. A., and Carpenter, G. (1994) Limited proteolysis of phospholipase C-γ1 indicates stable association of X and Y domains with enhanced catalytic activity. Biochem. J. 302, 503–509.

    PubMed  CAS  Google Scholar 

  50. Singer, A. U., Waldo, G. L., Harden, T. K., and Sondek, J. (2002) A unique fold of phospholipase C-β mediates dimerization and interaction with Gαq. Nature Struct. Biol. 9, 32–36.

    Article  PubMed  CAS  Google Scholar 

  51. Armah, D. A. and Mensa-Wilmot, K. (2000) Tetramerization of glycosylphosphatidylinositol-specific phospholipase C from Trypanosoma brucei. J. Biol. Chem. 275, 19,334–19,342.

    Article  CAS  Google Scholar 

  52. Rameh, L. E. and Cantley, L. C. (1999) The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. 274, 8347–8350.

    Article  PubMed  CAS  Google Scholar 

  53. Brown, H. A., Gutowski, S., Moomaw, C. R., Slaughter, C., and Sternweis, P. C. (1993) ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase activity. Cell 75, 1137–1144.

    Article  PubMed  CAS  Google Scholar 

  54. Mosior, M., Six, D. A., and Dennis, E. A. (1998) Group IV cytosolic phospholipase A2 binds with high affinity and specificity to phosphatidylinositol 4,5-bisphosphate resulting in dramatic increases in activity. J. Biol. Chem. 273, 2184–2191.

    Article  PubMed  CAS  Google Scholar 

  55. Gungabisson, R. A., Jiang, C. J., Drobak, B. K., Maciver, S. K., and Hussey, P. J. (1998) Interaction of maize actin-depolymerising factor with actin and phosphoinositides and its inhibition of plant phospholipase C. Plant J. 16, 689–696.

    Article  Google Scholar 

  56. Harlan, J. E., Hadjuk, P. J., Yoon, H. S., and Fesik, S. W. (1994) Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371, 168–170.

    Article  PubMed  CAS  Google Scholar 

  57. Echevarría-Machado, I., Muñoz-Sánchez, J. A., Loyola-Vargas, V. M., and Hernández-Sotomayor, S. M. T. (2002) Spermine stimulation of phospholipase C from Catharanthus roseus transformed roots. J. Plant Physiol. 159, 1179–1188.

    Article  Google Scholar 

  58. Echevarría-Machado, I., Kú-González, A., Loyola-Vargas, V. M., and Hernández-Sotomayor, S. M. T. (2004) Interaction of spermine with a signal transduction pathway involving phospholipase C, during the growth of Catharanthus roseus. Physiol. Plant. 120, 140–151.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César De Los Santos-Briones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Echevarría-Machado, I., Martínez-Estévez, M., Muño-Sánchez, J.A. et al. Membrane-associated phosphoinositides-specific phospholipase C forms from Catharanthus roseus transformed roots. Mol Biotechnol 35, 297–309 (2007). https://doi.org/10.1007/BF02686015

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02686015

Index Entries

Navigation