Skip to main content
Log in

The making of an erythroid cell

Molecular control of hematopoiesis

  • Published:
Biotherapy

Abstract

The number of circulating red cells is regulated by the daily balance between two processes: the destruction of the old red cells in the liver and the generation of new cells in the bone marrow. The process during which hematopoietic stem cells generate new red cells is called erythropoiesis. This manuscript will describe the molecular mechanisms involved in the process of erythroid differentiation as we understand them today. In particular it will review how erythroid specific growth factor-receptor interactions activate specific transcription factors to turn on the expression of the genes responsible for the establishment of the erythroid phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Stewart, A. (Ed.) Trends in Genetics.Genetic Nomenclature Guide. Cambridge, UK: Elsevier Science Publishers, 1995.

    Google Scholar 

  2. McCulloch EA. Stem cells in normal and leukemic hemopoiesis. Blood 1983; 62: 1–13.

    PubMed  CAS  Google Scholar 

  3. Ogawa M, Porter PN, Nakahata T. Renewal and commitment of differentiation of hemopoietic stem cells. Blood 1983; 61: 823–829.

    PubMed  CAS  Google Scholar 

  4. Ogawa M. Differentiation and proliferation of hematopoietic stem cells. Blood 1993; 81: 2844–2853.

    PubMed  CAS  Google Scholar 

  5. Migliaccio G, Migliaccio AR, Adamson JW. The biology of hematopoietic growth factors: studiesin vitro under serum-deprived conditions. Exp Hematol 1990; 18: 1049–1055.

    PubMed  CAS  Google Scholar 

  6. Russel ES. Hereditary anemias of the mouse: A review for geneticists. Adv Gen 1979; 20: 357–459.

    Google Scholar 

  7. Besmer P. Thekit ligand encoded at the murineSteel locus: a pleiotropic growth and differentiation factor. Curr Biol 1991; 3: 939–946.

    CAS  Google Scholar 

  8. Barker JE, Starr E. Characterization of spleen colonies derived from mice with mutations at the W locus. J Cell Physiol 1991; 149: 451–458.

    Article  PubMed  CAS  Google Scholar 

  9. Migliaccio AR, Migliaccio G, Mancini G, Ratajczak M, Gewirtz AM, Adamson JW. Induction of the murine “W phenotype” in long-term cultures of human cord blood cells by c-kit antisense oligomers. J Cell Physiol 1993; 157: 158–163.

    Article  PubMed  CAS  Google Scholar 

  10. Adamson JW. The erythropoietin/hematocrit relationship in normal and polycythemic man: implications of marrow regulation. Blood 1968; 32: 597–609.

    PubMed  CAS  Google Scholar 

  11. Wu H, Liu X, Jaenisch R, Lodish HF. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 1995; 83: 59–67.

    Article  PubMed  CAS  Google Scholar 

  12. Lin C-S, Lim S-K, D’Agati V, Constantini F. Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. Genes Devel, 1996; 10: 154–160.

    Article  PubMed  CAS  Google Scholar 

  13. Wu H, Klingmüller U, Besmer P, Lodish HF. Interaction of the erythropoietin and stem-cell-factor receptors. Nature 1995; 377: 242–246.

    Article  PubMed  CAS  Google Scholar 

  14. Trentin JJ. Influence of hematopoietic organstroma (hematopoietic inductive microenvironments) on stroma cell differentiation. In: Regulation of Hematopoiesis ho Gordon A.S. (ed.) New York: Appleton-Century-Crofts, 1970.

    Google Scholar 

  15. Van Zant G, Goldwasser E. Competition between erythropoietin and colony-stimulating factor for target cells in mouse marrow. Blood 1979; 53: 946–965.

    PubMed  Google Scholar 

  16. Johnson GR. Is erythropoiesis an obligatory step in the commitment of multipotential hematopoietic stem cells? In: Baum SJ, Ledney GD, Kahn A (eds) Experimental Hematology Today. New York: Springer-Verlag, 1981.

    Google Scholar 

  17. Till JE, McCulloch EA, Sizninovitch L. A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci USA 1964; 51: 29–34.

    Article  PubMed  CAS  Google Scholar 

  18. Nakahata T, Gross AJ, Ogawa M. A stochastic model of self-renewal and commitment to differentiation of the primitive hematopoietic stem cells in culture. J Cell Physiol 1982; 113: 455–458.

    Article  PubMed  CAS  Google Scholar 

  19. Koury MJ, Bondurant MC. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 1990; 248: 378–381.

    Article  PubMed  CAS  Google Scholar 

  20. Williams GT, Smith CA, Spooncer E, Dexter TM, Taylor DR. Haemopoietic colony-stimulating factors promote cell survival by suppressing apoptosis. Nature 1990; 343: 76–79.

    Article  PubMed  CAS  Google Scholar 

  21. Lassar AB, Paterson BM, Weintraub H. Transfection of a DNA locus that mediates the conversion of 10 XX 1/2 fibroblasts to myoblasts. Cell 1986; 47: 649–656.

    Article  PubMed  CAS  Google Scholar 

  22. D’Andrea AD, Lodish HF, Wong GG. Expression cloning of the murine erythropoietin receptor. Cell 1989; 57: 277–285.

    Article  PubMed  CAS  Google Scholar 

  23. Liboi E, Carroll M, D’Andrea AD, Mathey-Prevot B. Erythropoietin receptor signals both proliferation and erythroid-specific differentiation. Proc Natl Acad Sci USA 1993; 90: 11351–11355.

    Article  PubMed  CAS  Google Scholar 

  24. Migliaccio GM, Migliaccio AR, Kreider BL, Rovera G, Adamson JW. Selection of lineage-restricted cell lines immortalized at different stages of hematopoietic differentiation from the murine cell line 32D. J Cell Biol 1989; 109: 833–841.

    Article  PubMed  CAS  Google Scholar 

  25. Carrol M, Zhu Y, D’Andrea AD. Erythropoietin-induced cellular differentiation requires prolongation of the G1 phase of the cell cycle. Proc Natl Acad Sci USA 1995; 92: 2869–2873.

    Article  Google Scholar 

  26. Shimada Y, Migliaccio G, Ralph H, Migliaccio AR. Erythropoietin-specific cell cycle progression in erythroid subclones of the IL-3-dependent cell line 32D. Blood 1993; 81: 935–941.

    PubMed  CAS  Google Scholar 

  27. Fairbairn LJ, Cowling GJ, Reipert BM, Dexter TM. Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors. Cell 1993; 74: 823–832.

    Article  PubMed  CAS  Google Scholar 

  28. Nishijima I, Nakahata T, Hirabayashi Y, et al. A human GM-CSF receptor expressed in transgenic mice stimulates proliferation and differentiation of hemopoietic progenitors to all lineages in response to human GM-CSF. Mol Cell Biol 1995; 6: 497–508.

    CAS  Google Scholar 

  29. Jones SS, D’Andrea AD, Haines LL, Wong GG. Human erythropoietin receptor: cloning, expression, and biologic characterization. Blood 1990; 76: 31–35.

    PubMed  CAS  Google Scholar 

  30. D’Andrea AD, Zon LI. Erythropoietin receptor: Subunit structure and activation. J Clin Invest 1990; 86: 681–687.

    Article  PubMed  CAS  Google Scholar 

  31. Youssoufian H, Longmore G, Neumann D, Yoshimura A, Lodish HF. Structure function, and activation of the erythropoietin receptor. Blood 1993; 81: 2223–2226.

    PubMed  CAS  Google Scholar 

  32. Bazan JF. Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci USA 1990; 87: 6934–6938.

    Article  PubMed  CAS  Google Scholar 

  33. Yoshimura A, Zimmers T, Neumann D, Longmore G, Yoshimura Y, Lodish HF. Mutations in the Trp-Ser-X-Trp-Ser motif of the erythropoietin receptor abolish processing, ligand binding, and activation of the receptor. J Biol Chem 1992; 267: 11619–11625.

    PubMed  CAS  Google Scholar 

  34. Sawada K, Krantz SB, Sawyer ST, Civin CI. Quantitation of specific binding of erythropoietin to human erythroid colony-forming cells. J Cell Physiol 1988; 137: 337–345.

    Article  PubMed  CAS  Google Scholar 

  35. Landschulz KT, Noyes AN, Rogers O, Boyer SH. Erythropoietin receptors on murine erythroid colony-forming units: natural history. Blood 1989; 73: 1476–1486.

    PubMed  CAS  Google Scholar 

  36. Broudy VC, Lin N, Brice M, Nakamoto B, Papayannopoulou T. Erythropoietin receptor characteristics on primary human erythroid cells. Blood 1991; 77: 2583–2590.

    PubMed  CAS  Google Scholar 

  37. Ishibashi T, Koziol JA, Burstein SA. Human recombinant erythropoietin promotes differentiation of murine megakaryocytes in vitro. J Clin Invest 1987; 79: 286–289.

    PubMed  CAS  Google Scholar 

  38. Barron C, Migliaccio AR, Migliaccio G, Jiang Y, Adamson JW, Ottolenghi S. Alternatively spliced mRNAs encoding soluble isoforms of the erythropoietin receptor in murine cell lines and bone marrow. Gene 1994; 147: 263–268.

    Article  PubMed  CAS  Google Scholar 

  39. Miura O, D’Andrea A, Kabat D, Ihle JN. Induction of tyrosine phosphorylation by the erythropoietin receptor correlates with mitogenesis. Mol Cell Biol 1991; 11: 4895–4899.

    PubMed  CAS  Google Scholar 

  40. Gobert S, Porteu F, Pallu S, et al. Tyrosine phosphorylation of the erythropoietin receptor: Role for differentiation and mitogenic signal transduction. Blood 1995; 86: 598–606.

    PubMed  CAS  Google Scholar 

  41. Komatsu N, Adamson JW, Yamamoto K, et al. Erythropoietin rapidly induces tyrosine phosphorylation in the human erythropoietin-dependent cell line, UT-7. Blood 1992; 80: 53–59.

    PubMed  CAS  Google Scholar 

  42. Torti M, Marti KB, Altschuler D, Yamamoto K, Lapetina EG. Erythropoietin induces p21ras activation and pl2OGAP tyrosine phosphorylation in human erythroleukemia cells. J Biol Chem 1992; 267: 8293–8298.

    PubMed  CAS  Google Scholar 

  43. Satoh T, Nakafuku M, Miyajima A, Kaziro Y. Involvement ofras p21 protein in signal-transduction pathways from interleukin 2, interleukin 3, and granulocyte/macrophage colony-stimulating factor, but not from interleukin 4. Proc Natl Acad Sci USA 1991; 88: 3314–3318.

    Article  PubMed  CAS  Google Scholar 

  44. Miller BA, Scaduto RC, Tillotson DL, Botti JJ, Cheung JY. Erythropoietin stimulates a rise in intracellular free calcium concentration in single human erythroid precursors. J Clin Invest 1988; 82: 309–315.

    PubMed  CAS  Google Scholar 

  45. Miller BA, Cheung JY, Tillotson DL, Hope SM, Scaduto RC. Erythropoietin stimulates a rise in intracellular free calcium concentration in single BFU-E derived erythroblasts at specific stages of differentiation. Blood 1989; 73: 1188–1194.

    PubMed  CAS  Google Scholar 

  46. Mayeux P, Dusanter-Fourt I, Muller O, et al. Erythropoietin induces the association of phosphatidylinositol 3′-kinase with a tyrosine-phosphorylated protein complex containing the erythropoietin receptor. Eur J Biochem 1993; 216: 821–828.

    Article  PubMed  CAS  Google Scholar 

  47. Klingmüller U, Lorenz U, Cantley LC, Neel BG, Lodish HF. Specific recruitment of SH-PTP 1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 1995; 80: 729–738.

    Article  PubMed  Google Scholar 

  48. Tauchi T, Feng GS, Shen R, et al. Involvement of SH2-containing phosphotyrosine phosphatase Syp in erythropoietin receptor signal transduction pathways. J Biol Chem 1995; 270: 5631–5635.

    Article  PubMed  CAS  Google Scholar 

  49. Ihle J.N. Cytokine receptor signalling. Nature 1995; 377: 591–594.

    Article  PubMed  CAS  Google Scholar 

  50. Silvennoinen O, Witthuhn BA, Quelle FW, Cleveland JL, Yi T, Ihle JN. Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proc Natl Acad Sci USA 1993; 90: 8429–8433.

    Article  PubMed  CAS  Google Scholar 

  51. Fu XY. A transcription factor with SH2 and SH3 domains is directly activated by an interferon α-induced cytoplasmic protein tyrosine kinase(s). Cell 1990; 70: 323–335.

    Article  Google Scholar 

  52. Schindler C, Shuai K, Prezioso VR, Darnell JE. Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 1992; 257: 809–813.

    Article  PubMed  CAS  Google Scholar 

  53. Witthuhn BA, Quelle FW, Silvennoinen O, et al. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 1993; 74: 227–236.

    Article  PubMed  CAS  Google Scholar 

  54. Miura O, Nakamura N, Quelle FW, Witthuhn BA, Ihle JN, Aoki N. Erythropoietin induces association of the JAK2 protein tyrosine kinase with the erythropoietin receptor in vivo. Blood 1994; 84: 1501–1507.

    PubMed  CAS  Google Scholar 

  55. Barber DL, D’Andrea AD. Erythropoietin and Interleukin-2 activate distinct JAK kinase family members. Mol Cell Biol 1994; 14: 6506–6514.

    PubMed  CAS  Google Scholar 

  56. Zhuang H, Patel SV, He T-C, Sonsteby SK, Niu Z, Wojchowski DM. Inhibition of erythropoietin-induced mitogenesis by a kinase-deflcient form of Jak2. J Biol Chem 1994; 269: 21411–21414.

    PubMed  CAS  Google Scholar 

  57. Tanner JW, Chen W, Young RL, Longmore GD, Shaw AS. The conserved box 1 motif of cytokine receptors is required for association with JAK kinases. J Biol Chem 1995; 270: 6523–6530.

    Article  PubMed  CAS  Google Scholar 

  58. Schindler C, Darnell JE. Transcriptional responses to polypetide ligands: The Jak Stat pathways. Annu Rev Biochem 1995; 64: 621–651.

    Article  PubMed  CAS  Google Scholar 

  59. Koch CA, Anderson D, Moran MF, Ellis C, Pawson T. SHZ and SH3 domains: Elements that control interactions of cytoplasmic signaling proteins. Science 1991; 252: 668–674.

    Article  PubMed  CAS  Google Scholar 

  60. Erpel T, Courtneidge SA. Src family protein tyrosine kinases and cellular signal transduction pathways. Curr Op Cell Biol 1995; 7: 176–182.

    Article  PubMed  CAS  Google Scholar 

  61. Rothman P, Kreider B, Azam M, et al. Cytokines and growth factors signal through tyrosine phosphorylation of a family of related transcription factors. Immunity 1994; 1: 457–468.

    Article  PubMed  CAS  Google Scholar 

  62. Gouilleux F, Pallard C, Dusanter-Fourt I, et al. Prolactin, growth hormone, erythropoietin and granulocyte-macrophage colony stimulating factor induce MGF-Stat5 DNA binding activity. EMBO J. 1995; 14: 2005–2013.

    PubMed  CAS  Google Scholar 

  63. Wakao H, Harada N, Kitamura T, Mui ALF, Miyajirna A. Interleukin 2 and erythropoietin activate STAT5/MGF via distinct pathways. EMBO J. 1995; 14: 2527–2535.

    PubMed  CAS  Google Scholar 

  64. Pallard C, Gouilleux F, Charon M, Groner B, Gisselbrecht S, Fourt-Dusanter I. Interleukin-3, erythropoietin and prolactin activate a STAT5-like factor in lymphoid cells. J. Biol. Chem. 1995; 270: 15942–15945.

    Article  PubMed  CAS  Google Scholar 

  65. Machide M, Mano H, Todokoro K. Interleukin 3 and erythropoietin induce association of Vav with Tec kinase through Tec homology domain. Oncogene 1995; 11: 619–625.

    PubMed  CAS  Google Scholar 

  66. He T-C, Jiang N, Zhuang H, Wojchowski DM. Erythropoietin-induced recruitment of Shc via a receptor phosphotyrosine-independent, Jak2-associated pathway. J Biol Chem 1995; 270: 11055–11061.

    Article  PubMed  CAS  Google Scholar 

  67. Damen JE, Liu L, Cutler RL, Krystal G. Erythropoietin stimulates the tyrosine phosphorylation of Shc and its association with Grb2 and a 145-Kd tyrosine phosphorylated protein. Blood 1993; 82: 2296–2303.

    PubMed  CAS  Google Scholar 

  68. Ren HY, Komatsu N, Shimizu R, Okada K, Miura Y. Erythropoietin induces tyrosine phosphorylation and activation of phospholipase C-Y1 in human erythropoietin-dependent cell line. J Biol Chem 1994; 269: 19633–19638.

    PubMed  CAS  Google Scholar 

  69. Linnekin D, Evans GA, D Andrea A, Farrar WL. Association of the erythropoietin receptor with protein tyrosine kinase activity. Proc Natl Acad Sci USA 1992; 89: 6237–6241.

    Article  PubMed  CAS  Google Scholar 

  70. Bittorf J, Jaster R, Brock J. Rapid activation of the MAP kinase pathway in hematopoietic cells by erythropoietin, granulocyte-macrophage colony-stimulating factor and interleukin-3. Cell Sig 1994; 6: 305–311.

    Article  CAS  Google Scholar 

  71. Patel HR, Sytkowski AJ. Erythropoietin activation of API (Fos/Jun). Exp Hematol 1995; 23: 619–625.

    PubMed  CAS  Google Scholar 

  72. Gulbins E, Coggeshall KM, Baier G, Katzav S, Burn P, Altman A. Tyrosine kinase-stimulated guanine nucleotide exchange activity of Vav in T cell activation. Science 1993; 260: 822–825.

    Article  PubMed  CAS  Google Scholar 

  73. Miura O, Miura Y, Nakamura N, et al. Induction of tyrosine phosphorylation of Vav and expression of Pim-1 correlates with Jak2-mediated growth signaling from the erythropoietin receptor. Blood 1994; 84: 4135–4141.

    PubMed  CAS  Google Scholar 

  74. Tarakhovsky A, Turner M, Schaal S, et al. Defective antigen receptor-mediated proliferation of B and T cells in the absence of vav. Nature 1995; 374: 467–470.

    Article  PubMed  CAS  Google Scholar 

  75. Zhang R, Alt FW, Davidson L, Orkin SH, Swat W. Defective signalling through the T- and B-cell antigen receptors in lymphoid cell lacking the vav proto-oncogene. Nature 1995; 374: 470–473.

    Article  PubMed  CAS  Google Scholar 

  76. Mason-Garcia M, Harlan RE, Mallia C, et al. Interleukin-3 or erythropoietin induced nuclear localization of protein kinase C beta isoforms in hematopoietic target cells. Cell Prolif 1995; 28: 145–155.

    PubMed  CAS  Google Scholar 

  77. Spangler R, Bailey SC, Sytkowski AJ. Erythropoietin increases c-myc mRNA by a protein kinase C-dependent pathway. J Biol Chem 1991; 266: 681–684.

    PubMed  CAS  Google Scholar 

  78. Spangler R, Sytkowski AJ. c-myc is an erythropoietin early response gene in normal erythroid cells: evidence for a protein kinase C-mediated signal. Blood 1992; 79: 52–57.

    PubMed  CAS  Google Scholar 

  79. Saris CJ, Domen J, Berns A. The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J 1991; 10: 655–664.

    PubMed  CAS  Google Scholar 

  80. Domen J, van der Lugt NMT, Laird PW, et al. Impaired IL-3 response inPim-1-deficient bone marrow-derived mast cells. Blood 1993; 82: 1445–1452.

    PubMed  CAS  Google Scholar 

  81. te Riele H, Maandag ER, Clarke A, Hooper M, Berns A. Consecutive inactivation of both alleles of thepim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature 1990; 348: 649–651.

    Article  Google Scholar 

  82. van der Lugt NMT, Domen J, Verhoeven E, et al. Proviral tagging in Eµ-myc transgenic mice lacking thePim-1 proto-oncogene leads to compensatory activation ofPim-2. EMBO J 1995; 14: 2536–2544.

    PubMed  Google Scholar 

  83. Shen S-H, Bastien L, Posner BI, Chretien P. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases. Nature 1991; 352: 736–739.

    Article  PubMed  CAS  Google Scholar 

  84. Feng G-S, Hui C-C, Pawson T. SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases. Science 1993; 259: 1607–1611.

    Article  PubMed  CAS  Google Scholar 

  85. Yi T, Cleveland JL, Ihle JN. Protein tyrosine phosphatase containing SH2 domains: Characterization, preferential expression in hematopoietic cells, and localization to human chromosome 12p12-p13. Mol Cell Biol 1992; 12: 836–846.

    PubMed  CAS  Google Scholar 

  86. Tauchi T, Feng G-S, Marshall MS, et al. The ubiquitously expressed Syp phosphatase interacts with c-kit and Grb2 in hematopoietic cells. J Biol Chem 1994; 269: 25206–25211.

    PubMed  CAS  Google Scholar 

  87. Vogel W, Lammers R, Huang J, Ulrich A. Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science 1993; 259: 1611–1614.

    Article  PubMed  CAS  Google Scholar 

  88. Busfield SJ, Klinken SP. Erythropoietin-induced stimulation of differentiation and proliferation in J2E cells is not mimicked by chemical induction. Blood 1992; 80: 412–419.

    PubMed  CAS  Google Scholar 

  89. Taxman DJ, Wojchowski DM. Erythropoietin-induced transcription at the murine Bmaj-globin promoter. J Biol Chem 1995; 270: 6619–6627.

    Article  PubMed  CAS  Google Scholar 

  90. Lumelsky NL, Forget BG. Negative regulation of globin gene expression during megakaryocytic differentiation of a human erythroleukemic cell line. Mol Cell Biol 1991; 11: 3528–3536.

    PubMed  CAS  Google Scholar 

  91. Migliaccio AR, Jiang Y, Migliaccio G, et al. Transcriptional and posttranscriptional regulation of the expression of the erythropoietin receptor gene in human erythropoietin-responsive cell line. Blood 1993; 82: 3760–3769.

    PubMed  CAS  Google Scholar 

  92. Stamatoyannopoulos JA, Goodwin A, Joyce T, Lowrey CH. NF-E2 and GATA binding motifs are required for the formation of DNase I hypersensitive site 4 of the humanβ-globin locus control region. EMBO J 1995; 14: 106–116.

    PubMed  CAS  Google Scholar 

  93. Collis P, Antoniou M, Grosveld F. Definition of the minimal requirements within the humanβ-globin gene and the dominant control region for high level expression. EMBO J 1990; 9: 223–240.

    Google Scholar 

  94. Walters M, Martin DIK. Functional erythroid promoters created by interaction of the transcription factor GATA-1 with CACCC and AP-I/NFE-2 elements. Proc Natl Acad Sci USA 1992; 89: 10444–10448.

    Article  PubMed  CAS  Google Scholar 

  95. Tsai SF, Martin DIK, Zon LI, Andrea AD, Won GG, Orkin SH. Clonix of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature 1989; 339: 446–451.

    Article  PubMed  CAS  Google Scholar 

  96. Evans T, Felsenfeld G. The erythroid-specific transcription factor Eryfl: A new finger protein. Cell 1989; 58: 877–885.

    Article  PubMed  CAS  Google Scholar 

  97. Zon LI, Tsai SF, Burgess S, Matsudaira P, Bruns GAP, Orkin SH. The major human erythroid DNA-binding protein (GF-I): Primary sequence and localization of the gene to the X chromosome. Proc Natl Acad Sci USA 1990; 87: 668–672.

    Article  PubMed  CAS  Google Scholar 

  98. Orkin SH. GATA-binding transcription factors in hematopoietic cells. Blood 1992; 80: 575–581.

    PubMed  CAS  Google Scholar 

  99. Fong TC, Emerson BM. The erythroid-specific protein Gatal mediates distal enhancer activity through a specializedβ-globin TATA box. Gene Devel 1992; 6: 521–532.

    Article  CAS  Google Scholar 

  100. Kim CG, Swendeman SL, Barnhart KM, Sheffery M. Promoter elements and erythroid cell nuclear factors that regulateα-globin gene transcriptionin vitro. Mol Cell Biol 1990; 10: 5958–5966.

    PubMed  CAS  Google Scholar 

  101. Zon LI, Youssoufian H, Mather C, Lodish HF, Orkin SH. Activation of the erythropoietin receptor promoter by transcription factor Gata1. Proc Natl Acad Sci USA 1991; 88: 10638–10641.

    Article  PubMed  CAS  Google Scholar 

  102. Hannon R, Evans T, Felsenfeld G, Gould H. Structure and promoter activity of the gene for the erythroid transcription factorGata1. Proc Natl Acad Sci USA 1991; 88: 3004–3008.

    Article  PubMed  CAS  Google Scholar 

  103. Tsai, S-F, Stauss E, Orkin SH. Functional analysis and in vivo footprinting implicate the erythroid transcription factor GATA-1 as a positive regulator of its own promoter. Genes Dev. 1991; 5: 919–931

    Article  PubMed  CAS  Google Scholar 

  104. Crotta S, Nicolis S, Ronchi A, et al. Progressive inactivation of the expression of an erythroid transcriptional factor in GM- and G-CSF-dependent myeloid cell lines. Nucleic Acids Res 1990; 18: 6863–6869.

    Article  PubMed  CAS  Google Scholar 

  105. Migliaccio, AR, Migliaccio G, Ashihara E, Moroni E, Giglioni B, Ottolenghi S. Erythroid-specific activation of the distal (testis) promoter of GATA1 during differentiation of purified normal murine hamatopoietic stem cells. Acta Haematol, 1996; 95: 229–235.

    Article  PubMed  CAS  Google Scholar 

  106. Sposi NM, Zon LI, Carè A, et al. Cell cycle-dependent initiation and lineage-dependent abrogation of GATA-1 expression in pure differentiating hematopoietic progenitors. Proc Natl Acad Sci USA 1992; 89: 6353–6357.

    Article  PubMed  CAS  Google Scholar 

  107. Zon LI, Mather C, Burgess S, Bolce ME, Harland RM, Orkin SH. Expression of GATA-binding proteins during embryonic development in Xenopus laevis. Proc Natl Acad Sci USA 1991; 88: 10642–10646.

    Article  PubMed  CAS  Google Scholar 

  108. Romeo PH, Prandini MH, Joulin V, et al. Megakaryocytic and erythrocytic lineages share specific transcription factors. Nature 1990; 344: 447–449.

    Article  PubMed  CAS  Google Scholar 

  109. Martin DIK, Zon LI, Mutter G, Orkin SH. Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature 1990; 344: 444–447.

    Article  PubMed  CAS  Google Scholar 

  110. Kulessa H, Frampton J, Graf T. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, erythroblasts. Genes Dev 1995; 9: 1250–1262.

    Article  PubMed  CAS  Google Scholar 

  111. Farina SF, Girard LJ, Vanin EF, Nienhuis AW, Bodine DM. Dysregulated expression of GATA-1 following retrovirus-mediated gene transfer into murine hematopoietic stem cells increases erythropoiesis. Blood 1995; 86: 4124–4133.

    PubMed  CAS  Google Scholar 

  112. Ashihara E, Vannucchi AM, Migliaccio G et al. Growth factor receptor expression duringin vitro differentiation of partially purified populations containing murine stem cells. J. Cell Physiol. 1997; 171: 343–356.

    Article  PubMed  CAS  Google Scholar 

  113. Moroni E, Cairns L, Ottolenghi S, et al. Expression in hematopoietic cells of GATA-1 transcripts from the alternative “testis” promoter during development and cell differentiation. Biochem. Biophys. Res. Comm. 1997; 231: 299–304.

    Article  PubMed  CAS  Google Scholar 

  114. Ito E, Toki T, Ishihara H, et al. Erythroid transcription factor GATA-1 is abundantly transcribed in mouse testis. Nature 1993; 362: 466–468.

    Article  PubMed  CAS  Google Scholar 

  115. Yomogida K, Ohtani H, Harigae H, et al. Developmental stage- and spermatogenic cycle-specific expression of transcription factor GATA-1 in mouse Sertoli cells. Development 1994; 120: 1759–1766.

    PubMed  CAS  Google Scholar 

  116. Zon LI, Gurish MF, Stevens RL, et al. GATA-binding transcription factors in mast cells regulate the promoter of the mast cell carboxypeptidase A gene. J Biol Chem 1991; 266: 22948–22953.

    PubMed  CAS  Google Scholar 

  117. Dorfman DM, Wilson DB, Bruns GAP, Orkin SH. Human transcription factor GATA-2: Evidence for regulation of preproendothelin-1 gene expression in edothelial cells. J Biol Chem 1992; 267: 1279–1285.

    PubMed  CAS  Google Scholar 

  118. Lemarchandel V, Ghysdael J, Mignotte V, Rahuel C, Romeo PH. GATA and Ets cis-acting sequences mediate megakaryocyte-specific expression. Mol Cell Biol 1993; 13: 668–676.

    PubMed  CAS  Google Scholar 

  119. Merika M, Orkin SH. DNA-binding specificity of GATA family transcription factors. Mol Cell Biol 1993; 13: 3999–4010.

    PubMed  CAS  Google Scholar 

  120. Ko LJ, Engel JD. DNA-binding specificities of the GATA transcription factor family. Mol Cell Biol 1993; 13: 4011–4022.

    PubMed  CAS  Google Scholar 

  121. Weiss MJ, Keller G, Orkin SH. Novel insights into erythroid development revealed throughin vitro differentiation of GATA-1-embryonic stem cells. Genes Dev 1994; 8: 1184–1197.

    Article  PubMed  CAS  Google Scholar 

  122. Pevny L, Simon MC, Robertson E, et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factorGata1. Nature 1991; 349: 257–260.

    Article  PubMed  CAS  Google Scholar 

  123. Blobel GA, Simon MC, Orkin SH. Rescue of GATA-1-deficient embryonic stem cells by heterologous GATA-binding proteins. Mol Cell Biol 1995; 15: 626–633.

    PubMed  CAS  Google Scholar 

  124. Labbaye C, Valtieri M, Barberi T, et al. Differential expression and functional role of GATA-2, NF-E2, and GATA-1 in normal adult hematopoiesis. J Clin Invest 1995; 95: 2346–2358.

    PubMed  CAS  Google Scholar 

  125. Leonard M, Brice M, Eagel JD, Papayannopoulou T. Dynamics of GATA transcription factor expression during erythroid differentiation. Blood 1993; 82: 1071–1079.

    PubMed  CAS  Google Scholar 

  126. Zon LI, Yarnaguchi Y, Yee K, et al. Expression of mRNA for the GATA-binding proteins in human eosinophils and basophils: Potential role in gene transcription. Blood 1993; 81: 3234–3241.

    PubMed  CAS  Google Scholar 

  127. Tsai FY, Keller G, Kuo FC, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 1994; 371: 221–226.

    Article  PubMed  CAS  Google Scholar 

  128. Andrews NC, Erdjument-Bromage H, Davidson MB, Tempst P, Orkin SH. Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 1993; 362: 722–728.

    Article  PubMed  CAS  Google Scholar 

  129. Ney PA, Andrews NC, Jane SM, et al. Purification of the human NF-E2 complex: cDNA cloning of the hematopoietic cell-specific subunit and evidence for an associated partner. Mol Cell Biol 1993; 13: 5604–5612.

    PubMed  CAS  Google Scholar 

  130. Landschulz WH, Johnson PF, McKnight SL. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science, 1988; 240: 1759–1764.

    Article  PubMed  CAS  Google Scholar 

  131. Andrews NC, Kotkow KJ, Ney PA, Erdjument-Bromage H, Tempst P, Orkin SH. The ubiquitous subunit of erythroid transcription factor NF-E2 is a small basic-leucine zipper protein related to thev-maf oncogene. Proc Natl Acad Sci USA 1993; 90: 11488–11492.

    Article  PubMed  CAS  Google Scholar 

  132. Igarashi K, Kataoka K, Itoh K, Hayashi N, Nishizawa M, Yamamoto M. Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins. Nature 1994; 367: 568–572.

    Article  PubMed  CAS  Google Scholar 

  133. Kataoka K, Nishizawa M, Kawai S. Structure-function analysis of themaf oncogene product, a member of the b-Zip protein family. J Virol 1993; 67: 2133–2141.

    PubMed  CAS  Google Scholar 

  134. Orlic D, Anderson S, Biesecker LG, Sorrentino BP, Bodine DM. Pluripotent hematopoietic stem cells contain high levels of mRNA for c-kit, GATA-2, p45 NF-E2, and c-myb and low levels or no mRNA for c-fms and the receptors for granulocyte colony-stimulating factor and interleukins 5 and 7. Proc Natl Acad Sci USA 1995; 92: 4601–4605.

    Article  PubMed  CAS  Google Scholar 

  135. Ney PA, Sorrentino BP, Lowrey CH, Nienhuis AW. Inducibility of the HSII enhancer depends on binding of an erythroid specific nuclear protein. Nucleic Acid Res 1990; 18: 6011–6017.

    Article  PubMed  CAS  Google Scholar 

  136. Talbot D, Philipsen S, Fraser P, Grosveld F. Detailed analysis of the site 3 region of the humanβ-globin dominant control region. EMBO J 1990; 9: 2169–2178.

    PubMed  CAS  Google Scholar 

  137. Pondel MD, George M, Proudfoot NJ. The LCR-likeα-globin positive regulatory element functions as an enhancer in transiently transfected cells during erythroid differentiation. Nucleic Acid Res 1992; 20: 237–243.

    Article  PubMed  CAS  Google Scholar 

  138. Jarman AP, Wood WG, Sharpe JA, Gourdon G, Ayyub H, Higgs DR. Characterization of the major regulatory element upstream of the humanα-globin gene cluster. Mol Cell Biol 1991; 11: 4679–4689.

    PubMed  CAS  Google Scholar 

  139. Ney PA, Sorrentino BP, McDonagh KT, Nienhuis AW. Tandem AP-1 binding sites within the humanβ-globin dominant control region function as an inducible enhancer in erythroid cells. Genes Dev 1990; 4: 993–1006.

    Article  PubMed  CAS  Google Scholar 

  140. Talbot D, Grosveld F. The 5′SH2 of the globin locus control region enhances transcription through the interaction of a multimeric complex binding at two functionally distinct NF-E2 binding sites. EMBO J, 1991; 10: 1391–1398.

    PubMed  CAS  Google Scholar 

  141. Sorrentino B, Ney P, Bodine D, Nienhius AW. A 46 base pair enhancer sequence within the locus activating region is required for induced expression of the gamma-globin gene during erythroid differentiation. Nucleic Acid Res 1990; 18: 2721–2731.

    Article  PubMed  CAS  Google Scholar 

  142. Mignotte V, Eleouet JF, Raich N, Romeo P-H. Cis and transacting elements involved in the regulation of the erythroid promoter of the human porphobilinogen deaminase gene. Proc Natl Acad Sci USA 1989; 86: 6548–6552.

    Article  PubMed  CAS  Google Scholar 

  143. Teketani S, Inazawa J, Nakahashi Y, Abe T, Tokunaga R. Structure of the human ferrochelatase gene. Exon/intron gene organization and location of the gene to chromosome 18. Euro J Biochem 1992; 205: 217–222.

    Article  Google Scholar 

  144. Cox TC, Bawden MJ, Martin A, May BK. Human erythroid 5-aminolevulinate synthase: promoter analysis and identification of an iron-responsive element in the mRNA. EMBO J 1991; 10: 1891–1902.

    PubMed  CAS  Google Scholar 

  145. Ben-David Y, Bani MR, Chabot B, De Koven A, Bernstein A. Retroviral insertion downstream of the heterogeneous nuclear ribonucleoprotein Al gene in erythroleukemia cells: evidence that Al is not essential for cell growth. Mol Cell Biol 1992; 12: 4449–4455.

    PubMed  CAS  Google Scholar 

  146. Lu S-J, Rowan S, Bani MR, Ben-David Y. Retroviral integration within theFli-2 locus results in inactivation of the erythroid transcription factor NF-E2 in Friend erythroleukemias: Evidence that NF-E2 is essential for globin expression. Proc Natl Acad Sci USA 1994; 91: 8398–8402.

    Article  PubMed  CAS  Google Scholar 

  147. Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, et al. Transcription factor NF-E2 is required for platelet formation independent of the action of thrombopoietin/MGDF in megakaryocyte development. Cell 1995; 81: 695–704.

    Article  PubMed  CAS  Google Scholar 

  148. Miller IJ, Bieker JJ. A novel erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol Cell Biol 1993; 13: 2776–2786.

    PubMed  CAS  Google Scholar 

  149. Feng WC, Southwood CM, Bieker JJ. Analyses ofβ-thalassemia mutant DNA interactions with erythroid Kruppel-like factor (EKLF), and erythroid cell-specific transcription factor. J Biol Chem 1994; 269: 1493–1500.

    PubMed  CAS  Google Scholar 

  150. Grossley M, Tsang AP, Bieker JJ, Orkin SH. Regulation of the erythroid Kruppel-like factor (EKLF) gene promoter by the erythroid transcription factorGata1. J Biol Chem 1994; 269: 15440–15444.

    Google Scholar 

  151. Tsai S-F, Strauss E, Orkin SH. Functional analysis and in vivo footprinting implicate the erythroid transcription factor GATA-1 as a positive regulator of its own promoter. Genes Dev 1991; 5: 919–931.

    Article  PubMed  CAS  Google Scholar 

  152. Begley CG, Aplan PD, Denning SM, Haynes BF, Waldmann TA, Kirsch IR. The gene SCL is expressed during early hernatopoiesis and encodes a differentiation-related DNA binding motif. Proc Natl Acad Sci USA 1989; 86: 10128–10132.

    Article  PubMed  CAS  Google Scholar 

  153. Begley CG, Visvader J, Green AR, et al. Molecular cloning and chromosomal localization of the murine homolog of the human helix-loop-helix gene SCL. Proc Natl Acad Sci USA 1991; 88: 869–873.

    Article  PubMed  CAS  Google Scholar 

  154. Mouthon M-A, Berbard O, Mitjavila M-T, Romeo H-P, Vainchenker W, Mathieu-Mahul D. Expression oftal-1 and GATA-binding proteins during human hematopoiesis. Blood 1993; 81: 647–655.

    PubMed  CAS  Google Scholar 

  155. Visvader J, Begley CG, Adams JM. Differential expression of theLyl, SCL andE2A helix-loop-helix genes within the hemopoietic system. Oncogene 1991; 6: 187–194.

    PubMed  CAS  Google Scholar 

  156. Green AR, Salvaris E, Begley CG. Erythroid expression of the helix-loop-helix gene. Oncogene 1991; 6: 475–479.

    PubMed  CAS  Google Scholar 

  157. Green AR, Lints T, Visvader J, Harvey R, Begley CG.SCL is coexpressed withGataI in hemopoietic cells but is also expressed in developing brain. Oncogene 1992; 7: 653–660.

    PubMed  CAS  Google Scholar 

  158. Xia Y, Brown L, Yang CY-C, et al.TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. Proc Natl Acad Sci USA 1991; 88: 11416–11420.

    Article  PubMed  CAS  Google Scholar 

  159. Mcllentin JD, Smith SD, Clearly ML.lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell 1989; 58: 77–83.

    Article  Google Scholar 

  160. Quertermous EE, Hidai H, Blanar MA, Quertermous T. Cloning and characterization of a basic helix-loop-helix protein expressed in early mesoderm and the developing somites. Proc Natl Acad Sci USA 1994; 91: 7066–7070.

    Article  PubMed  CAS  Google Scholar 

  161. Hsu H-L, Cheng J-T, Chen Q, Baer R. Enhancer-binding activity of thetal-1 oncoprotein in association with the E47/E12 helix-loop-helix proteins. Mol Cell Biol 1991; 11: 3037–3042.

    PubMed  CAS  Google Scholar 

  162. Green AR, Rockman S, DeLuca E, Begley CG. Induced myeloid differentiation of K562 with downregulation of erythroid and megakaryocytic transcription factors. A novel experimental model for haemopoietic lineage restriction. Exp Hematol 1993; 21: 525–531.

    PubMed  CAS  Google Scholar 

  163. Aplan PD, Nakahara K, Orkin SH, Kirsch IR. The SCL gene product: a positive regulator of erythroid differentiation. EMBO J 1992; 11: 4073–4081.

    PubMed  CAS  Google Scholar 

  164. Green AR, DeLuca E, Begley CG. Antisense SCL suppresses self-renewal and enhances spontaneous erythroid differentiation of the human leukaemic cell line K562. EMBO J 1991; 10: 4153–4158.

    PubMed  CAS  Google Scholar 

  165. Visvader JE, Elefanty AG, Strasser A, Adams JM. Gatal but not SCL induces megakaryocitic differentiation in an early myeloid line. EMBO J. 1992; 11: 4557–4564.

    PubMed  CAS  Google Scholar 

  166. Aplan PD, Begley CG, Bertness V, et al. The SCL gene is formed from transcriptionally complex locus. Mol Cell Biol 1990; 10: 6426–6435.

    PubMed  CAS  Google Scholar 

  167. Voronova AF, Lee F. The E2A and tal-1 helix-loop-helix proteins associate in vivo and are modulated by ld proteins during interleukin 6-induced myeloid differentiation. Proc Natl Acad Sci USA 1994; 91: 5952–5956.

    Article  PubMed  CAS  Google Scholar 

  168. Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 1990; 61: 49–59.

    Article  PubMed  CAS  Google Scholar 

  169. Sun X-H, Copeland NG, Jenkins NA, Baltimore D. Id proteins Id1 and Id2 selectively inhibit DNA binding by one clas of helix-loop-helix proteins. Mol Cell Biol 1991; 11: 5603–5611.

    PubMed  CAS  Google Scholar 

  170. Shoji W, Yamamoto T, Obinata M. The helix-loop-helix protein Id inhibits differentiation of murine erythroleukemia cells. J Biol Chem 1994; 269: 5078–5084.

    PubMed  CAS  Google Scholar 

  171. Condorelli G, Vitelli L, Valtieri M, et al. Coordinate expression and developmental role of Id2 protein and TAL1/EZA heterodimer in erythroid progenitor differentiation. Blood 1995; 86: 164–175.

    PubMed  CAS  Google Scholar 

  172. Prasad KSS, Jordan JE, Koury MK, Bondurant MC, Brandt SJ. Erythropoietin stimulates transcription of theTALI/SCL gene and phosphorylation of its protein products. J Biol Chem 1995; 270: 11603–11611.

    Article  PubMed  CAS  Google Scholar 

  173. Shivdasani RA, Nayer EL, Orkin SL. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tall/SCL. Nature 1995; 373: 432–434.

    Article  PubMed  CAS  Google Scholar 

  174. Robb L, Lyons I, Li R, et al. Absence of yolk sac hematopoiesis from mice with a targeted disruption of thescl gene. Proc Natl Acad Sci USA 1995 92: 7075–7079.

    Article  PubMed  CAS  Google Scholar 

  175. Scott EW, Simon MC, Anastasi J, Singh H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 1994; 265: 1573–1577.

    Article  PubMed  CAS  Google Scholar 

  176. Boehm T, Foroni L, Kaneko Y, Perutz MF, Rabbitts TH. The rhombotin family of cystein-rich LIM domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci USA 1991; 88: 4367–4371.

    Article  PubMed  CAS  Google Scholar 

  177. Royer-Pokora B, Loos U, Ludwig W-D. TTG-2, a new gene encoding a cystein-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q1). Oncogene 1991; 6: 1887–1893.

    PubMed  CAS  Google Scholar 

  178. Foroni L, Boehm T, White L, et al. The rhombotin gene family encode related LIM-domain proteins whose differing expression suggests multiple roles in mouse development. J Mol Biol 1992; 226: 747–761.

    Article  PubMed  CAS  Google Scholar 

  179. Boehm T, Forono H., Kennedy M, Rabbitts TH. The rhombotin gene belongs to a class of transcriptional regulators with a potential novel protein dimerization motif. Oncogene 1990; 5: 1103–1105.

    PubMed  CAS  Google Scholar 

  180. Sanchez-Garcia I, Rabbitts TH. LIM domain proteins in leukemia and development. Sem Canc Biol 1993; 4: 349–358.

    CAS  Google Scholar 

  181. Warren AJ, Colledge WH, Carlton MBL, Evans MJ, Smith AJH, Rabbitts TH. The oncogenic cystein-rich LIM domain protein Rbtn2 is essential for erythroid development. Cell 1994; 78: 45–57.

    Article  PubMed  CAS  Google Scholar 

  182. Valge-Archer VE, Osada H, Warren AJ, et al. The LIM protein Rbtn2 and the basic helix-loop-helix protein TAL1 are present in a complex in erythroid cells. Proc Natl Acad Sci USA 1994; 91: 8617–8621.

    Article  PubMed  CAS  Google Scholar 

  183. Wadman I, Li J, Bash RO, et al. Specificin vivo association between the bHLH and LIM proteins implicated in human T cell leukemia. EMBO 1994; 13: 4831–4839.

    CAS  Google Scholar 

  184. Sheiness D, Gardinier M. Expression of a proto-oncogene (proto-myb) in hematopoietic tissues of mice. Mol Cell Biol 1984; 4: 1206–1212.

    PubMed  CAS  Google Scholar 

  185. Gonda TJ, Metcalf D. Expression ofmyb, myc andfos protooncogenes during the differentiation of a murine myeloid leukaemia. Nature 1984; 310: 249–251.

    Article  PubMed  CAS  Google Scholar 

  186. Ramsay RG, Ikeda K, Rifkind RA, Marks PA. Changes in gene expression associated with induced differentiation of erythroleukemia: protooncogenes, globin genes, and cell division. Proc Natl Acad Sci USA 1986; 83: 6849–6853.

    Article  PubMed  CAS  Google Scholar 

  187. Henkemeyer MJ, Bennett RL, Gertler FB, Hoffman FM. DNA sequence, structure, and tyrosine kinase activity of theDrosophila melanogaster Abelson proto-oncogene homolog. Mol Cell Biol 1988; 8: 843–853.

    PubMed  CAS  Google Scholar 

  188. Tokodoro K, Watson RJ, Higo H, et al. Down-regulation ofc-myb gene expression is a prerequisite for erythropoietin-induced erythroid differentiation. Proc Natl Acad Sci USA 1988; 85: 8900–8904.

    Article  Google Scholar 

  189. Rosson D, O’Brien TG. Constitutivec-myb expression in K562 cells inhibits induced erythroid differentiation but not tetradecanoyl phorbol acetate-induced megakaryocytic differentiation. Mol Cell Biol 1995; 15: 772–779.

    PubMed  CAS  Google Scholar 

  190. Gewirtz AM, Calabretta B. Ac-myb antisense oligodeoxynucleotide inhibits normal human hematopoieis in vitro. Science 1988; 242: 1003–1006.

    Article  Google Scholar 

  191. Mucenski ML, McLain K, Bier AB, et al. A functionalc-myb gene is required for normal murine fetal hematopoiesis. Cell 1991; 65: 677–689.

    Article  PubMed  CAS  Google Scholar 

  192. Klemsz MJ, McKercher SR, Celada A, Van Beveren C, Maki RA. The macrophage and B cell-specific transcription factor PU. 1 is related to the ets oncogene. Cell 1990; 61: 113–124.

    Article  PubMed  CAS  Google Scholar 

  193. Moreau-Gachelin F, Tavitian A, Tambourin P. Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature 1988; 33: 277–280.

    Article  Google Scholar 

  194. Paul R, Schuetze S, Kozak SL, Kozak CA, Kabat D. The Sfpi-I proviral integration site of Friend erythroleukemia encodes the ets-related transcription factor PU.1. J Virol. 1991; 65: 464–467.

    PubMed  CAS  Google Scholar 

  195. Chen HM, Zhang P, Voso MT, et al. Neutrophils and monocytes express high levels of PU.1 (Spi-1) but not Spi-B. Blood 1995; 85: 2918–2928.

    PubMed  CAS  Google Scholar 

  196. Galson DL, Hensold JO, Bishop TR, et al. Mouseβ-globin DNA-binding protein BI is identical to a proto-oncogene, the transcription factor Spi-I/PU.1, and is restricted in expression to hematopoietic cells and the testis. Mol Cell Biol 1993; 13: 2929–2941.

    PubMed  CAS  Google Scholar 

  197. Hromas R, Orazi A, Neiman RS, et al. Hematopoietic lineage-and stage-restricted expression of the ETS oncogene family member PU.1. Blood 1993; 82: 2998–3004.

    PubMed  CAS  Google Scholar 

  198. Pahl HL, Scheibe RJ, Zhang DE, et al. The proto-oncogene PU.1 regulates expression of the myeloid-specific CD11b promoter. J Biol Chem 1993; 268: 5014–5020.

    PubMed  CAS  Google Scholar 

  199. Zhang DE, Hetherington CJ, Chen HM, Tenen DG. The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol Cell Biol 1994; 14: 373–381.

    PubMed  CAS  Google Scholar 

  200. Schuetze S, Stenberg PE, Kabat D. The Ets-related transcription factor PU.1 immortalizes erythroblasts. Mol Cell Biol 1993; 13: 5670–5678.

    PubMed  CAS  Google Scholar 

  201. Voso MT, Burn TC, Wulf G, Lim B, Leone G, Tenen DG. Inhibition of hematopoiesis by competitive binding of transcription factor PU.1. Proc Natl Acad Sci USA 1994; 91: 7932–7936.

    Article  PubMed  CAS  Google Scholar 

  202. Lawrence HJ, Largman C. Homeobox genes in normal hematopoiesis and leukemia. Blood 1992; 80: 2445–2453.

    PubMed  CAS  Google Scholar 

  203. Kongsuwan K, Webb E, Housiaux P, Adams JM. Expression of multiple homeobox genes within diverse mammalian haemopoietic lineages. EMBO J 1988; 7: 2131–2138.

    PubMed  CAS  Google Scholar 

  204. Lowney P, Corral J, Detmer K, et al. A human Hox I homeobox gene exhibits myeloid-specific expression of alternative transcripts in human hematopoietic cells. Nucleic Acid Res 1991; 19: 3443–3449.

    Article  PubMed  CAS  Google Scholar 

  205. Magli MC, Barba P, Celetti A, De Vita G, Cillo C, Boncinelli E. Coordinate regulation of HOX genes in human hematopoietic cells. Proc Natl Acad Sci USA 1991; 88: 6348–6352.

    Article  PubMed  CAS  Google Scholar 

  206. Shen WF, Detmer K, Mathews CHE, et al. Modulation of Homeobox gene expression alters the phenotype of human hematopoietic cell lines. EMBO J. 1992; 11: 983–989.

    PubMed  CAS  Google Scholar 

  207. Metcalf D. Hematopoietic regulators: redundancy or subtlety. Blood 1993; 82: 3515–3523.

    PubMed  CAS  Google Scholar 

  208. Migliaccio G, Migliaccio AR, Valinsky J, Langley K, Zsebo K, Visser JWM. Stem cell factor (SCF) induces proliferation and differentiation of highly enriched murine hematopoietic cells. Proc Natl Acad Sci USA 1991; 88: 7420–7424.

    Article  PubMed  CAS  Google Scholar 

  209. Hirayama F, Shih JP, Awgulewitsch A, Warr GW, Clark SC, Ogawa M. Clonal proliferation of murine lymphohemopoietic progenitors in culture. Proc. Natl Acad Sci USA 1992; 89: 5907–5911.

    Article  PubMed  CAS  Google Scholar 

  210. Brandt J, Briddell RA, Srour EF, Leemhais TB, Hoffman R. Role of c-kit ligand in the expansion of human hematopoietic progenitor cells. Blood 1992; 79: 634–641.

    PubMed  CAS  Google Scholar 

  211. Migliaccio G, Migliaccio AR, Druzin ML, Giardina PJV, Zsebo KM, Adamson JW. Long-term generation of colony-forming cells in liquid culture of CD34+ cord blood cells in the presence of recombinant human stem cell factor. Blood 1992; 79: 2620–2627.

    PubMed  CAS  Google Scholar 

  212. Sonoda Y, Yang YC, Wong GG, Clark SC, Ogawa M. Analysis in serum-free culture of the targets of recombinant human hemopoietic growth factors: interleukin 3 and granulocyte/macrophage-colony stimulating factor are specific for early developmental stages. Proc Natl Acad Sci USA 1988; 85: 4360–4364.

    Article  PubMed  CAS  Google Scholar 

  213. Migliaccio G, Migliaccio AR, Adamson JW.In vitro differentiation of human granulocyte/macrophage and erythroid progenitors: comparative analysis of the influence of recombinant human erythropoietin, G-CSF, GM-CSF, and IL-3 in serum-supplemented and serum-deprived cultures. Blood 1988; 72: 248–256.

    PubMed  CAS  Google Scholar 

  214. Dainiak N, Kreczko S. Interactions of insulin, insulin-like growth factor II, and platelet-derived growth factor in erythropoietic culture. J Clin Invest 1985; 76: 1237–1242.

    PubMed  CAS  Google Scholar 

  215. Akahane K, Tojo A, Urabe A, Takaku F. Pure erythropoietic colony and burst formations in serum-free culture and their enhancement by insulin-like growth factor. Exp Hematol 1987; 15: 797–802.

    PubMed  CAS  Google Scholar 

  216. Merchav S, Tatarsky I, Hochberg Z. Enhancement of human granulopoiesisin vitro by biosynthetic insulin-like growth factor 1/somatomedin C and human growth hormone. J Clin Invest 1988; 81: 791–797.

    PubMed  CAS  Google Scholar 

  217. Migliaccio AR, Bruno M, Migliaccio G. Evidence for direct action of human biosynthetic (recombinant) GM-CSF on erythroid progenitors in serum-free culture. Blood 1987; 70: 1867–1871.

    PubMed  CAS  Google Scholar 

  218. Iscove NN, Guilbert LJK, Weyman C. Complete replacement of serum in primary cultures of erythropoietin-dependent red cell precursors (CFU-E) by albumin, transferrin, iron, unsaturated fatty acid, lecithin and cholesterol. Exp Cell Res 1980; 126: 121–126.

    Article  PubMed  CAS  Google Scholar 

  219. Migliaccio AR, Migliaccio G. Human embryonic hemopoiesis: control mechanisms underlying progenitor differentiation in vitro. Dev Biol 1988; 125: 127–134.

    Article  PubMed  CAS  Google Scholar 

  220. Migliaccio AR, Vannucchi AM, Migliaccio G. Molecular control of erythroid differentiation (review article). Int. J. Hemat. 1996; 64: 1–29.

    Article  CAS  Google Scholar 

  221. Kelly LL, Green WF, Hicks GG, Bondurant MC, Koury MJ, Ruley HE. Apoptosis in erythroid progenitors deprived of erythropoietin occurs during the G1 and S phases of the cell cycle without growth arrest or stabilization of wild-type p53. Mol Cell Biol 1994; 14: 4183–4192.

    Google Scholar 

  222. Vannucchi A, Alespeiti G, Migliaccio G, Migliaccio AR. Differential expression of the GATA1 family and growth factor receptors in purified stem cells (HSC) and multilineage progenitor cells. Blood 1995; 86: 303a.

  223. Jiang, Y, Migliaccio G, Migliaccio AR, Adamson JW. Regulation of the expression of the Id gene during erythroid differentiation of 32D cells. Blood 1993; 82: 100a.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Rita Migliaccio.

Additional information

In writing this review we have followed the Trend in Genetics guidelines for abbreviations (1). Briefly, abbreviations in italics refer to genes while non-italic, all uppercase abbreviations refer to proteins. Gene abbreviations with only the first letter capitalized, or all letter capitalized, indicate the murine or the human gene respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migliaccio, A.R., Migliaccio, G. The making of an erythroid cell. Biotherapy 10, 251–268 (1998). https://doi.org/10.1007/BF02678546

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02678546

Key words

Navigation