Skip to main content
Log in

Rare microsatellite polymorphisms in the DNA repair genesXRCC1, XRCC3 andXRCC5 associated with cancer in patients of varying radiosensitivity

  • Published:
Somatic Cell and Molecular Genetics

Abstract

DNA repair defects might contribute both to cancer progression and to the extreme reactions to radiotherapy observed in ≈5% of patients. Polymorphic microsatellites in three DNA repair genes, XRCC1, XRCC3 and XRCC5, were analyzed for possible linkage to cancer status or clinical radiosensitivity. XRCC1, 3 and 5 proteins are involved in single-strand DNA break rejoining, recombinational repair, and double-strand DNA break rejoining respectively. Mendelianly inherited microsatellite polymorphisms in these genes were analyzed in three groups: volunteers with no cancer history; radiosensitive cancer patients; cancer patients with acceptable reactions to radiotherapy. Rare heterozygous alterations in all three gene regions were found solely in the cancer subpopulation. Association testing between these rare polymorphisms and cancer status revealed a significant association for XRCC1 (P=0.005), and XRCC3 (P=0.004). There was also an association between these polymorphisms and clinical radiosensitivity for XRCC1 (P=0.03), and XRCC3 (P=0.005).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Liu, B., Parsons, R., Papadopoulos, N., Nicolaides, N.C., Lynch, H.T., Watson, P., Jass, J.R., Dunlop, M., Wyllie, A., Peltomaki, P., de la Chapelle, A., Hamilton, S.R., Vogelstein, B., and Kinzler, K.W. (1996) Analysis of musmatch repair genes in hereditary non-polyposis colorectal cancer patients.Nat Med.,2:169–174.

    Article  PubMed  CAS  Google Scholar 

  2. Badie, C., Iliakis, G., Foray, N., Alsbeith, G., Pantellias, G.E., Okayasu, R., Cheong, N., Russell, N.S., Begg, A.C., Arlett, C.F., and Malaise, E.P. (1995) Defective repair of DNA double-strand breaks and chromosome damage in fibroblasts from a radiosensitive leukaemia patient.Cancer Res.,55:1232–1234.

    PubMed  CAS  Google Scholar 

  3. Thompson, L.H., Brookman, K.W., Jones, N.J., Allen, S.A., and Carrano, A.V. (1990) Molecular cloning of the human XRCC1 gene which corrects defective DNA strand break repair and sister chromatid exchange.Mol. Cell. Biol.,10:6160–6171.

    PubMed  CAS  Google Scholar 

  4. Caldecott, K.W., Aoufouchi, S., Johnson, P., and Shall, S. (1996) XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular ‘nick-sensor’ in vitro.Nucleic Acids Res.,24:4387–4394.

    Article  PubMed  CAS  Google Scholar 

  5. Tebbs, R.S., Zhao, Y., Tucker, J.D., Scheerer, J.B., Siciliano, M.J., Hwang, M., Liu, N., Legerski, R.J., and Thompson, L.H. (1995) Correction of chromosomal instability and sensitivity to diverse mutagens by a cloned cDNA of the XRCC3 DNA repair gene.Proc. Natl. Acad. Sci. U.S.A. 92:6354–6358.

    Article  PubMed  CAS  Google Scholar 

  6. Thompson, L.H. (1996) Evidence that mammalian cells possess homologous recombinational repair pathways.Mutat Res.,363:77–88.

    PubMed  Google Scholar 

  7. Chen, F.Q., Peterson, S.R., Story, M.D., and Chen, D.J. (1996) Disruption of DNA-PK in Ku80 mutant xrs-6 and the implications in DNA double-strand break repair.Mutat. Res.,362:9–19.

    PubMed  Google Scholar 

  8. Hafezparast, M., Kaur, G.P., Zdzienicka, M., Athwal, R.S., Lehmann, A.R., and Jeggo, P.A. (1993) Subchromosomal localization of a gene (XRCC5) involved in double strand break repair to the region 2q34-36.Somat. Cell. Mol. Genet.,19:413–421.

    Article  PubMed  CAS  Google Scholar 

  9. Taccioli, G.E., Gottlieb, T.M., Blunt, T., Priestley, A., Demengeot, J., Mizuta, R., Lehmann, A.R., Alt, F.W., Jackson, S.P., and Jeggo, P.A. (1994) Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination.Science,265:1442–1445.

    Article  PubMed  CAS  Google Scholar 

  10. Lees-Miller, S.P., Chen, Y.R., and Anderson, C.W. (1990) Human cells contain a DNA-activated protein kinase that phosphorylates simian virus 40 T antigen. mouse p53, and the human Ku autoantigen.Mol. Cell. Biol.,10:6472–6481.

    PubMed  CAS  Google Scholar 

  11. Weissenbach, J., Gyapay, G., Dib, C., Vignal, A., Morissette, J., Millasseau, P., Vaysseix, G., and Lathrop, M. (1992) A second-generation linkage map of the human genome.Nature,359:794–801.

    Article  PubMed  CAS  Google Scholar 

  12. Mahadevan, M., Tsilfidis, C., Sabourin, L., Shutler, G., Amemiya, C., Jansen, G., Neville, C., Narang, M., Barcelo, J., Ohoy, K., Leblond, S., Earlemacdonald J., Dejong, P.J., Wieringa, B., and Korneluk, R.G. (1992) Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene.Science,255:1253–1255.

    Article  PubMed  CAS  Google Scholar 

  13. Huntington’s Disease Collaborative Research Group. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes.Cell,72:971–983.

    Article  Google Scholar 

  14. Fu, Y.H., Kuhl, D., Pizzuti, A., Pieretti, M., Sutcliffe, J.S., Richards, S., Verkerk, A., Holden, J., Fenwick, R.G., Warren, S.T., Oostra, B.A., Nelson, D.L., and Caskey, C.T. (1991). Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox.Cell,67:1047–1058.

    Article  PubMed  CAS  Google Scholar 

  15. Bates, G. (1996). Expanded glutamines and neurodegeneration—a gain of insight.Bioessays,18:175–178.

    Article  PubMed  CAS  Google Scholar 

  16. Leach, F.S., Nicolaides, N.C., Papadopoulos, N., Liu, B., Jen, J., Parsons, R., Peltomaki, P., Sistonen, P., Aaltonen, L.A., Nystromlahti, M., Guan, X.Y., Zhang, J., Meltzer, P.S., Yu, J.W., Kao, F.T., Chen, D.J., Cerosaletti, K.M., Fournier, R., Todd, S., Lewis, T., Leach, R.J., Naylor, S.L., Weissenbach, J., Mecklin, J.P., Jarvinen, H., Petersen, G.M., Hamilton, S.R., Green, J., Jass, J., Watson, P., Lynch, H.T., Trent, J.M., Delachapelle, A., Kinzler, K.W., and Vogelstein, B. (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer.Cell,75:1215–1225.

    Article  PubMed  CAS  Google Scholar 

  17. Fishel, R., Lescoe, M.K., Rao, M., Copeland, N.G., Jenkins, N.A., Garber, J., Kane, M., and Kolodner, R. (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer.Cell,75:1027–1038.

    Article  PubMed  CAS  Google Scholar 

  18. Ellis, N.A., Groden, J., Ye, T.Z., Straughen, J., Lennon, D.J., Ciocci, S., Proytcheva, M., and German, J. (1995) The Bloom’s syndrome gene product is homologous to RecQ helicases.Cell,83:655–666.

    Article  PubMed  CAS  Google Scholar 

  19. Kaneko, H., Inoue, R., Yamada, Y., Sukegawa, K., Fukao, T., Tashita, H., Teramoto, T., Kasahara, K., Takami, T., and Kondo, N. (1996) Microsatellite instability in B-cell lymphoma originating from Bloom syndrome.Int. J. Cancer,69:480–483.

    Article  PubMed  CAS  Google Scholar 

  20. Hayashi, K. (1991) PCR-SSCP: A simple and sensitive method for detection of mutations in the genomic DNA.PCR Methods Applic.,1:34–38.

    CAS  Google Scholar 

  21. Thompson, L.H., Brookman, K.W., Dillehay, L.E., Carrano, A.V., Mazrimas, J.A., Mooney, C.L., and Minkler, J.L. (1982) A CHO cell strain having hypersensitivity to mutagens, a defect in DNA strand-break repair, and an extraordinary baseline frequency of sister chromatid exchange.Mutat. Res.,95:427–440.

    PubMed  CAS  Google Scholar 

  22. Taccioli, G.E., Rathbun, G., Oltz, E., Stamato, T., Jeggo, P.A., and Alt, F.W. (1993) Impairment of V(D) J recombination in double strand-break repair mutants.Science,260:207–210.

    Article  PubMed  CAS  Google Scholar 

  23. Peterson, S.R., Kurimasa, A., Oshimura, M., Dynan, W.S., Bradbury, E.M., and Chen, D.J. (1995) Loss of the catalytic subunit of the DNA-dependent protein kinase in DNA double-strand-break-repair mutant mammalian cells.Proc. Natl. Acad. Sci. U.S.A.,92:3171–3174.

    Article  PubMed  CAS  Google Scholar 

  24. Schuler, W., Weiler, I.J., Schuler, A., Phillips, R.A., Rosenberg, N., Mak, T.W., Kearney, J.F., Perry, R.P., and Bosma, M.J. (1986) Rearrangement of antigen receptor genes is defective in mice with severe combined immune-defective in mice with severe combined immune-deficiency.Cell,46:963–972.

    Article  PubMed  CAS  Google Scholar 

  25. Cavazzana-Calvo, M., Le Deist, F., De Saint Basil, G., Papadopoulo, D., De Villartay, J.P., and Fischer, A. (1993) Increased radiosensitivity of granulocyte macrophage colony forming units and skin fibroblasts in human autosomal recessive severe combined immuno-deficiency.J. Clin. Invest.,91:1214–1218.

    Article  PubMed  CAS  Google Scholar 

  26. West, C.M.L., Hendry, J.H., Scott, D., Davidson, S.E., and Hunter, R.D. (1991) 25th Paterson Symposium—is there a future for radiosensitivity testing?.Br. J. Cancer,64:197–199.

    PubMed  CAS  Google Scholar 

  27. Kagan, A.R. (1988) The importance of genetics for the optimization of radiation therapy.Am. J. Clin. Oncol.,11:84–88.

    Article  PubMed  Google Scholar 

  28. Lawton, P., and Lambin, P. (1994) Radiosensitivity testing of normal tissues: a way to optimize radio-therapy?Eur. J. Cancer,30A:576–577.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, E.A., Bourne, S.L., Radbourne, R. et al. Rare microsatellite polymorphisms in the DNA repair genesXRCC1, XRCC3 andXRCC5 associated with cancer in patients of varying radiosensitivity. Somat Cell Mol Genet 23, 237–247 (1997). https://doi.org/10.1007/BF02674415

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02674415

Keywords

Navigation