Skip to main content
Log in

Microstructural control in hot working of IN-718 superalloy using processing map

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The hot-working characteristics of IN-718 are studied in the temperature range 900 °C to 1200 °C and strain rate range 0.001 to 100 s−1 using hot compression tests. Processing maps for hot working are developed on the basis of the strain-rate sensitivity variations with temperature and strain rate and interpreted using a dynamic materials model. The map exhibits two domains of dynamic recrystallization (DRX): one occurring at 950 °C and 0.001 s−1 with an efficiency of power dissipation of 37 pct and the other at 1200 °C and 0.1 s−1 with an efficiency of 40 pct. Dynamic recrystallization in the former domain is nucleated by the δ(Ni3Nb) precipitates and results in fine-grained microstructure. In the high-temperature DRX domain, carbides dissolve in the matrix and make interstitial carbon atoms available for increasing the rate of dislocation generation for DRX nucleation. It is recommended that IN-718 may be hot-forged initially at 1200 °C and 0.1 s−1 and finish-forged at 950 °C and 0.001 s−1 so that fine-grained structure may be achieved. The available forging practice validates these results from processing maps. At temperatures lower than 1000 °C and strain rates higher than 1 s−1 the material exhibits adiabatic shear bands. Also, at temperatures higher than 1150°C and strain rates more than 1s−1, IN-718 exhibits intercrystalline cracking. Both these regimes may be avoided in hotworking IN-718.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metallurgy and Applications of Superalloy 718, Edward A. Loria, ed., TMS-AIME, Warrendale, PA, 1989.

  2. A.E. Marsh:Metallurgia, 1982, vol. 49, pp. 10–20.

    Google Scholar 

  3. R.E. Bailey: Report No. SP-69-9, Allegheny Ludlum Steel Research Center, Brackenridge, PA, 1969.

    Google Scholar 

  4. P.K. Chaudhury, J.J. Valencia, and D. Zhao:Materials Week ’92, ASM and TMS, Chicago, IL, p. 65 (Abstract).

  5. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker:Metall. Trans. A, 1984, vol. 15A, pp. 1883–92.

    CAS  Google Scholar 

  6. H.L. Gegel, J.C. Malas, S.M. Doraivelu, and V.A. Shende:Metals Handbook, ASM, Metals Park, OH, 1987, vol. 14, pp. 417–38.

    Google Scholar 

  7. J.M. AlexanderModelling of Hot Deformation of Steels, Springer-Verlag, Berlin, 1989, pp. 101–14.

    Google Scholar 

  8. H. Ziegler:Progress in Solid Mechanics, John Wiley and Sons, New York, NY, 1963, vol. 4, pp. 93–193.

    Google Scholar 

  9. A.K.S. Kalyan Kumar: Master’s Thesis, Indian Institute of Science, Bangalore, 1987.

    Google Scholar 

  10. Y.V.R.K. Prasad:Ind. J. Technol., 1990, vol. 28, pp. 435–51.

    CAS  Google Scholar 

  11. C.T. Sims and W.C. Hagel:The Superalloy, Wiley-Interscience Publishing, New York, NY, 1972.

    Google Scholar 

  12. R. Raj:Metall. Trans. A, 1981, vol. 12A, pp. 1089–97.

    Google Scholar 

  13. N. Srinivasan and Y.V.R.K. Prasad:Mater. Sci. Technol., 1992, vol. 8, pp. 206–12.

    CAS  Google Scholar 

  14. N. Srinivasan and Y.V.R.K. Prasad:J. Mater. Process. Technol., 1994, vol. 41, pp. 409–24.

    Article  Google Scholar 

  15. M.J. Luton and CM. Seilars:Acta Metall., 1969, vol. 17, pp. 1033–43.

    Article  CAS  Google Scholar 

  16. H.J. McQueen and J.J. Jonas:Treatise Mater. Sci. Technol., 1975, vol. 6, pp. 393–493.

    CAS  Google Scholar 

  17. T.E. Howson and W.J. Couts, Jr.:Metallurgy and Applications-Superalloy 718, TMS-AIME, Warrandale, PA, 1989, pp. 685–94.

    Google Scholar 

  18. P.E. Mosser, G. Leconte, J. Leray, A. Lasalmonie, and Y. Honnarat:Metallurgy and Applications-Superalloy 718, TMS-AIME, Warrandale, PA, 1989, pp. 79–93.

    Google Scholar 

  19. N. Srinivasan and Y.V.R.K. Prasad:Mater. Sci. Technol., in press.

  20. M. Ueki, S. Horie, and T. Nakamura:Mater. Sci. Technol., 1987, vol. 3, pp. 329–37.

    CAS  Google Scholar 

  21. M.N. Shetty and A.K. Laha:Z. Metallkd., 1986, vol. 6, pp. 397–402.

    Google Scholar 

  22. N. Srinivasan and Y.V.R.K. Prasad: Indian Institute of Science, Bangalore, unpublished research, 1993.

  23. B.E.P. Beeston and L.K. France:J. Inst. Met., 1968, vol. 96, pp. 105–07.

    CAS  Google Scholar 

  24. K. Monma; H. Suto, and H. Oikama:J. Jpn. Inst. Met., 1964, vol. 28, pp. 188–96.

    Google Scholar 

  25. D.D. Pruthi, M.S. Anand, and R.P. Agarwala:J. Nucl. Mater., 1977, vol. 64, pp. 206–10.

    Article  CAS  Google Scholar 

  26. W.J. McG. Tegart:Ductility, ASM, Metals Park, OH, 1968, pp. 133–77.

    Google Scholar 

  27. W.A. Wilkinson:Metallurgy and Applications—Superalloy 718, TMS-AIME, Warrandale, PA, 1989, pp. 119–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasan, N., Prasad, Y.V.R.K. Microstructural control in hot working of IN-718 superalloy using processing map. Metall Mater Trans A 25, 2275–2284 (1994). https://doi.org/10.1007/BF02652327

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652327

Keywords

Navigation