Skip to main content
Log in

Kinetics of solid state reaction between barium carbonate and cupric oxide

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The kinetics and equilibrium of the solid state reaction between barium carbonate and cupric oxide have been examined thermogravimetrically. The reaction rate is found to be dominated by effects of nucleation and diffusion of carbon dioxide produced. A mathematical model incorporating these effects, along with considerations of heat transfer, is found to satisfactorily correlate the conversion-time data. The reaction is found to follow the stoichiometry BaCO3 + CuO ⇌ BaCuO2 + CO2 although at temperatures above 1123 K, some evidence of BaO is also seen through X-ray diffraction. In the pelletized samples, incomplete conversion is noticed indicative of pore closure effects leading to transport limitations. The latter is also independently confirmed by porosity and surface area measurements. Data on the reaction equilibrium are also obtained and, in conjunction with Van’t Hoff’s relation, are used to obtain a correlation for the endothermic heat of reaction as a function of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

C :

concentration of CO2 in product layer

C 0 :

external bulk concentration of CO2

C*(T) :

equilibrium concentration at temperatureT

C*0 :

C*(T0), equilibrium concentration at bulk temperature

D(T) :

effective diffusivity at temperatureT

Dc :

D(Tc), effective diffusivity at core temperature

D s :

D(Ts), effective diffusivity at surface temperature

D 0 :

D(T0), effective diffusivity at bulk temperature

H :

Ds/kgR0

h :

heat-transfer coefficient

ΔH(T) :

heat of reaction at temperatureT

ΔHc :

ΔH(Tc), heat of reaction at core temperature

k :

nucleation rate constant

k g :

mass-transfer coefficient

k s :

thermal conductivity of solid

K e :

equilibrium constant

n :

constant, Eq. [7]

P CO 2 :

partial pressure of carbon dioxide

r :

radial position in pellet

r c :

core radius

r s :

pellet radius at any time

R 0]:

initial pellet radius

R g :

ideal gas constant

S :

external surface area of pellet

t :

time

T :

temperature

T 0 :

bulk temperature

T c :

core temperature

T s :

surface temperature

V :

pellet volume

X :

conversion

z :

ratio of volume of product pellet to that of reactant pellet

α :

Eq. [17]

βc :

Eq. [18]

ξ :

r/R0

ξc :

rc/R0

ξs :

rs/R0

λ:

k s /hR0

ψ:

C/C*0

ψ:

C*(Tc)/C*0

ψ0 :

C 0/C*0

ρ :

molar density

θ :

T/T 0

gqc :

Tc/T0

θs :

Ts/T0

References

  1. M.K. Wu, A.R. Ashburn, C.J. Torny, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, and C.W. Chu:Phys. Rev. Lett., 1987, vol. 58, pp. 908–10.

    Article  CAS  Google Scholar 

  2. E. Ruckenstein, S. Narain, and N. Wu:J. Mater. Res., 1989, vol. 4, pp. 267–72.

    CAS  Google Scholar 

  3. H. Midgeon:Rev. Chem. Mineral., 1976, vol. 13, p. 440.

    Google Scholar 

  4. E. Lambert: JCPDS Report No. 33-511 of Mineral Petrogr., University of Heidelberg, Heidelberg, 1981.

  5. C. Michel and B. Raveau:J. Solid State Chem., 1982, vol. 43, pp. 73–80.

    Article  CAS  Google Scholar 

  6. I. Halasz, I. Kireschner, T. Porjesz, Gy. Kovacs, T. Karman, Gy. Zsolt, Cs. Sukosd, N.S. Rozlosnik, and J. Kurti:Physica C., 1988, vol. 153, pp. 379–80.

    Article  Google Scholar 

  7. S.G. Acharya: Master’s Dissertation, Indian Institute of Technology, Bombay, 1991, p. 40.

  8. J. Szekely, J.W. Evans, and H.Y. Sohn:Gas Solid Reactions, Academic Press, New York, NY, 1976.

    Google Scholar 

  9. H.Y. Sohn:Metall. Trans. B, 1978, vol. 9B, pp. 89–96.

    CAS  Google Scholar 

  10. D.A. Young:Decomposition of Solids, Pergamon Press, Oxford, 1966.

    Google Scholar 

  11. B.V. Erofeef:Compt. Rend. Acad. Sci. U.R.S.S., 1946, vol. 52, p. 511.

    Google Scholar 

  12. M. Avrami:J. Chem. Phys., 1940, vol. 8, pp. 212–24.

    Article  CAS  Google Scholar 

  13. G. Narsimhan:Chem. Eng. Sci., 1961, vol. 16, pp. 7–20.

    Article  CAS  Google Scholar 

  14. A.W.D. Hills:Chem. Eng. Sci., 1968, vol. 23, pp. 297–320.

    Article  CAS  Google Scholar 

  15. J. Mu and D.D. Perlmutter:Chem. Eng. Sci., 1980, vol. 35, pp. 1645–56.

    Article  CAS  Google Scholar 

  16. K.B. Bischoff:Chem. Eng. Sci., 1963, vol. 18, pp. 711–13.

    Article  CAS  Google Scholar 

  17. D. Luss:Can. J. Chem. Eng., 1968, vol. 46, pp. 154–56.

    Article  CAS  Google Scholar 

  18. G.S.G. Beveridge and P.J. Goldie:Chem. Eng. Sci., 1968, vol. 23, pp. 913–29.

    Article  CAS  Google Scholar 

  19. S.K. Bhatia:Chem. Eng. Sci., 1985, vol. 40, pp. 869–72.

    Article  CAS  Google Scholar 

  20. R. Aris:The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Vol. 1: The Theory of the Steady State, Oxford, London, 1975, pp. 123–24.

    Google Scholar 

  21. M. Hartman and R.W. Coughlin:AIChE J., 1976, vol. 22, pp. 490–98.

    Article  CAS  Google Scholar 

  22. J.A. Pask and L.K. Templeton:Kinetics of High Temperature Processes, MIT Press, Cambridge, MA, 1959, pp. 255–64.

    Google Scholar 

  23. S.K. Bhatia and D.D. Perlmutter:AIChE. J., 1983, vol. 29, pp. 79–86.

    Article  CAS  Google Scholar 

  24. D.R. Clarke, T.M. Shaw, and D. Dimos:J. Am. Ceram. Soc., 1989, vol. 72, pp. 1103–13.

    Article  CAS  Google Scholar 

  25. Y.J. Hao and T. Tanaka:Int. Chem. Eng., 1990, vol. 30, pp. 244–52.

    Google Scholar 

  26. A. Rehmat and S.C. Saxena:Ind. Eng. Chem. Proc. Des. Dev., 1976, vol. 15, pp. 343–50.

    Article  CAS  Google Scholar 

  27. J.M. Smith:AIChE. J., 1968, vol. 14, p. 650.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acharya, S.G., Bhatia, S.K. & Shankar, H.S. Kinetics of solid state reaction between barium carbonate and cupric oxide. Metall Trans B 23, 493–503 (1992). https://doi.org/10.1007/BF02649668

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649668

Keywords

Navigation