Skip to main content
Log in

Newly established cell lines fromDrosophila larval CNS express neural specific characteristics

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

From the central nervous system ofDrosophila melanogaster 3rd instar larvae, eight continuous cell lines have been established (named ML-DmBG1 to 8). Using ML-DmBG2, single colony isolation was carried out and six colonial clones were obtained. All reacted to the antibody to horseradish peroxidase, which is a neuronal marker in insects. Acetylcholine, a known neurotransmitter inDrosophila, was detected in three of the colonial clones by high performance liquid chromatography. Therefore, it is concluded that the established colonial clones are neural cells originating in the larval central nervous system. Among them, some variation was observed with respect to morphology, acetylcholine content, and reactivity to anti-HRP. The variation may reflect the heterogeneity of cells composing the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cross, D. P.; Sang, J. H. Cell culture of individualDrosophila embryos I. Development of wild-type cultures. J. Embryol. Exp. Biol. 45:161–172; 1978.

    CAS  Google Scholar 

  2. Currie, D. A.; Milner, M. J.; Evans, C. W. The growth and differentiationin vitro of leg and wing imaginal disc cells fromDrosophila melanogaster. Development 102:805–814; 1988.

    Google Scholar 

  3. Davis, K. T.; Shearn, A.In vitro growth of imaginal disks fromDrosophila melanogaster. Science 196:438–440; 1977.

    Article  PubMed  CAS  Google Scholar 

  4. Echalier, G.; Ohanessian, A.In vitro culture ofDrosophila melanogaster embryonic cells. In Vitro 6:162–172; 1970.

    Article  PubMed  CAS  Google Scholar 

  5. Falkmer, S.; Emdin, S.; Have, N., et al. Insulin in invertebrate and cyclostomes. Am. Zool. 13:625–638; 1973.

    CAS  Google Scholar 

  6. Furst, A.; Mahowald, A. P. Differentiation of primary embryonic neuroblasts in purified neural cell cultures fromDrosophila. Dev. Biol. 109:184–192; 1985.

    Article  PubMed  CAS  Google Scholar 

  7. Fujimori, K.; Yamamoto, K. Determination of acetylcholine and choline in perchlorate extracts of brain tissue using liquid chromatography-electrochemistry with an immobilized-enzyme reactor. J. Chromatogr. 414:167–173; 1987.

    Article  PubMed  CAS  Google Scholar 

  8. Garofalo, R. S.; Rosen, O. M. Tissue localization ofDrosophila melanogaster insulin receptor transcripts during development. Mol. Cell. Biol. 8:1638–1647; 1988.

    PubMed  CAS  Google Scholar 

  9. Gorczyca, M.; Hall, J. C. Immunohistochemical localization of choline acetyltransferase during development and inCha ts mutants ofDrosophila melanogaster. J. Neurosci. 7:1361–1369; 1987.

    PubMed  CAS  Google Scholar 

  10. Jan, L. Y.; Jan, Y. N. Antibodies to horseradish peroxidase as specific neuronal markers inDrosophila and in grasshopper embryos. Proc. Natl. Acad. Sci. USA 79:2700–2704; 1982.

    Article  PubMed  CAS  Google Scholar 

  11. Katz, F.; Moats, W.; Jan, L. N. A carbohydrate epitope expressed uniquely on the cell surface ofDrosophila neurons is altered in the mutantnac (neurally altered carbohydrate). EMBO J. 7:3471–3477; 1988.

    PubMed  CAS  Google Scholar 

  12. Kim, Y-T.; Wu, C-F. Distinctions in growth cone morphology and motility between monopolar and multipolar neurons inDrosophila CNS cultures. J. Neurobiol. 22:263–275; 1991.

    Article  PubMed  CAS  Google Scholar 

  13. Kim Y-T.; Wu, C-F. Reversible blockage of neurite development and growth cone formation in neuronal cultures of a temperature-sensitive mutant ofDrosophila. J. Neurosci. 7:3245–3255; 1987.

    PubMed  CAS  Google Scholar 

  14. Kojima, T.; Sone, M.; Michiue, T.; Saigo, K. Mechanism of induction ofbar-like eye malformation by transient overexpression ofbar homeobox gene inDrosophila melanogaster. Genetica, in press.

  15. Kuroda, Y.; Tamura, S. A technique for the culture of melanotic tumors ofDrosophila melanogaster in the synthetic medium. Med. J. Osaka. Univ. 7:137–144; 1956.

    Google Scholar 

  16. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  17. Lendahl, U.; McKsay, R. D. G. The use of cell lines in neurobiology. TINS 13:132–137; 1990.

    PubMed  CAS  Google Scholar 

  18. Lewis, S. E.; Smallman, B. N. The estimation of acetylcholine in insects. J. Physiol. 134:241–256; 1956.

    PubMed  CAS  Google Scholar 

  19. Meneses, P.; Ortiz, M. A. A protein extract fromDrosophila melanogaster with insulin-like activity. Comp. Biochem. Physiol. 51A:483–485; 1975.

    Article  Google Scholar 

  20. Miyake, T.; Ueda, R. Establishment of embryonic cell lines inDrosophila melanogaster. Protein, Nucleic Acid Enzyme Suppl.: 314–318; 1984.

  21. Peel, D. J.; Milner, M. J. The diversity of cell morphology in cloned cell lines derived fromDrosophila imaginal discs. Roux’s Arch. Dev. Biol. 198:479–482; 1990.

    Article  Google Scholar 

  22. Saigo, K.; Ueda, R.; Miyake, T. Polymorphism and stability of histone gene clusters inDrosophila melanogaster cultured cells. Biochim. Biophys. Acta 740:390–401; 1983.

    PubMed  CAS  Google Scholar 

  23. Salvaterra, P. M.; McCaman, R. E. Choline acetyltransferase and acetylcholine levels inDrosophila melanogaster. A study using two temperature-sensitive mutants. J. Neurosci. 5:903–910; 1985.

    PubMed  CAS  Google Scholar 

  24. Schaeffer, W. I. Terminology associated with cell, tissue and organ culture, molecular biology and molecular genetics. In Vitro. Cell. Dev. Biol. 26:97–101; 1990.

    Article  PubMed  CAS  Google Scholar 

  25. Schneider, I. Cell lines derived from late embryonic stages ofDrosophila melanogaster. J. Embryol. Exp. Morph. 27:353–365; 1972.

    PubMed  CAS  Google Scholar 

  26. Seecof, R. L.; Alleaume, M.; Teplitz, R. L., et al. Differentiation of neurons and myocytes in cell cultures made fromDrosophila gastrulae. Exp. Cell Res. 69:161–173; 1971.

    Article  PubMed  CAS  Google Scholar 

  27. Seecof, R.; Dewhurst, S. Insulin is aDrosophila hormone and acts to enhance the differentiation of embryonicDrosophila cells. Cell Differ. 3:63–70; 1974.

    Article  PubMed  CAS  Google Scholar 

  28. Shields, G.; Sang, J. H. Characteristics of five cell types appearing duringin vitro culture of embryonic material fromDrosophila melanogaster. J. Embryol. Exp. Morph. 23a:53–69; 1970.

    Google Scholar 

  29. Snow, P. M.; Patel, N. H.; Harrelson, A., et al. Neural-specific carbohydrate moiety shared by many surface glycoproteins inDrosophila and grasshopper embryos. J. Neurosci. 7:4137–4144; 1987.

    PubMed  CAS  Google Scholar 

  30. Straus, D. S. Effects of insulin on cellular growth and proliferation. Life Sci. 29:2131–2139; 1981.

    Article  PubMed  CAS  Google Scholar 

  31. Ui, K.; Ueda, R.; Miyake, T. Cell lines from imaginal discs ofDrosophila melanogaster. In Vitro Cell. Dev. Biol. 23:707–710; 1987.

    Article  PubMed  CAS  Google Scholar 

  32. Ui, K.; Ueda, R.; Miyake, T.In vitro cultures of cells from different kinds of imaginal discs ofDrosophila melanogaster. Jpn. J. Genet. 63:33–41; 1988.

    Google Scholar 

  33. Ui, K.; Togashi, S.; Ueda, R., et al. Establishment of cell lines from larval central nervous system ofDrosophila melanogaster. Jpn. J. Genet. 63:606; 1988.

    Google Scholar 

  34. Ui, K.; Ueda, R.; Miyake, T.In vitro culture of cells from dissociated imaginal disc ofDrosophila melanogaster. In: Mitsuhashi, J., ed. Invertebrate cell system applications, vol. II. Florida: CRC press; 1989:212–231.

    Google Scholar 

  35. Ui, K.; Sakuma, M.; Nishihara, S., et al. Neurotransmitter analysis in cell lines from larval CNS ofDrosophila melanogaster. Jpn. J. Genet. 64:492; 1989.

    Google Scholar 

  36. White, K.; Kankel, D. R. Patterns of cell division and cell movement in the formation of the imaginal nervous system inDrosophila melanogaster. Dev. Biol. 65:296–321; 1978.

    Article  PubMed  CAS  Google Scholar 

  37. Wu, C-F. Neurogenetic studies ofDrosophila central nervous system neurons in culture. In: Beadle, D. J.; Lees, G.; Kater, S. B., eds. Cell culture approaches to invertebrate neuroscience. New York: Academic Press; 1988:149–187.

    Google Scholar 

  38. Wu, C-F.; Sakai, K.; Saito, M., et al. GiantDrosophila neurons differentiated from cytokinesis-arrested embryonic neuroblasts. J. Neurobiol. 21:499–507; 1989.

    Article  Google Scholar 

  39. Wu, C-F,; Suzuki, N.; Poo, M-M. Dissociated neurons from normal and mutantDrosophila larval nervous system in cell culture. J. Neurosci. 3:1888–1899; 1983.

    PubMed  CAS  Google Scholar 

  40. Wyss, C. Ecdysterone, insulin and fly extract needed for the proliferation of normalDrosophila cells in defined medium. Exp. Cell Res. 139:297–307; 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ui, K., Nishihara, S., Sakuma, M. et al. Newly established cell lines fromDrosophila larval CNS express neural specific characteristics. In Vitro Cell Dev Biol - Animal 30, 209–216 (1994). https://doi.org/10.1007/BF02632042

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02632042

Key words

Navigation