Skip to main content
Log in

Modulation of the liver specific phenotype in the human hepatoblastoma line Hep G2

  • Rapid Communications in Cell Biology
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

The human hepatoblastoma line Hep G2 modulates gene expression in vitro in response to increasing culture density. Two stages of growth can be defined. At low density (<200,000 cells/cm2) the cultures have a doubling time of 24 h and exhibit several characteristics of fetal liver cells, including increased synthesis of alphafetoprotein, reduced synthesis of albumin, a predominance of the fetal isoenzymes of both aldolase and pyruvate kinase and a reduced level of the cell surface receptor for asialoglycoproteins. Confluent, high density cultures of Hep G2 (>1×106 cells/cm2) have a doubling time of 193 h, a four fold higher level of albumin production, increased levels of the adult isoenzymes of aldolase and pyruvate kinase and increased asialoglycoprotein receptor. The alteration in albumin and alphafetoprotein synthesis was reflected by changes in the messenger RNA levels and the relative transcription of these two genes. Hep G2 provides a cell culture model for the modulation of the liver phenotype which occurs during fetal/adult development or during liver regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Adelman, R. C.; Morris, H. P.; Weinhouse, S. Fructokinase, triokinase and aldolases in liver tumors of the rat. Can. Res. 37:2408–2413; 1967.

    Google Scholar 

  2. Aden, D. P.; Fogel, A.; Plotkin, S., et al. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature 282:615–616; 1979.

    Article  PubMed  CAS  Google Scholar 

  3. Beaudet, A. L.; Matteson, K. J.; Su, T. S., et al. Construction and screening of a human liver cDNA library. Pediatric Res. 16:189A; 1982.

    Google Scholar 

  4. Belanger, L.; Baril, P.; Guertin, M. C., et al.. Oncodevelopmental and hormonal regulation of α-fetoprotein expression. Adv. Enzyme Reg. 21:73–99; 1983.

    Article  CAS  Google Scholar 

  5. Bonney, R. J.; Walker, P. R.; Potter, V. R. Isoenzyme patterns in parenchymal and non-parenchymal cells isolated from regenerating and regenerated rat liver. Biochem. J. 136:947–954; 1973.

    PubMed  CAS  Google Scholar 

  6. Bücher, T.; Pfleiderer, G. Pyruvate kinase from muscle. Meth. Enzymol. 1:435–440; 1955.

    Article  Google Scholar 

  7. Chen, Z. J.; Banks, R. A.; Rifkind, et al. Inducer mediated commitment of murine erythroleukemia cells to differentiation: A multistep process. Proc. Natl. Acad. Sci. USA 79:471–475; 1982.

    Article  PubMed  CAS  Google Scholar 

  8. Chiu, J. F.; Gabryelak, T.; Commers, P., et al. The elevation of α-fetoprotein messenger RNA in regenerating rat liver. Biochem. Biophys. Res. Comm. 98:250–254; 1981.

    Article  PubMed  CAS  Google Scholar 

  9. Ciechanover, A.; Schwartz, A. L.; Lodish, H. F. The asialoglycoprotein receptor internalizes and recycles independently of the transferrin and insulin receptors. Cell 32:267–275; 1983.

    Article  PubMed  CAS  Google Scholar 

  10. Clayton, D. F.; Darnell, J. E., Jr. Changes in liver specific compared to common gene transcription during primary culture of mouse hepatocytes. Mol. Cell. Biol. 3:1552–1561; 1983.

    PubMed  CAS  Google Scholar 

  11. Darlington, G. J.; Bernhard, H. P.; Miller, R. A., et al. Expression of liver phenotypes in cultured mouse hepatoma cells. J. Natl. Can. Instit. 64:809–819; 1980.

    CAS  Google Scholar 

  12. Deeley, R. G.; Gordon, J. I.; Burns, A. T. H., et al. Primary activation of the vitellogenin gene in the rooster. J. Biol. Chem. 252:8310–8319; 1977.

    PubMed  CAS  Google Scholar 

  13. Endo, H.; Eguchi, M.; Yanogi, S. Irreversible fixation of increased level of muscle type aldolase activity appearing in rat liver in the early stage of hepatocarcinogenesis. Can. Res. 30: 743–752; 1970.

    CAS  Google Scholar 

  14. Garvey, J. S.; Cremer, N. E.; Sussdorf, D. H. Methods in Immunology, 3rd edition. Addison Wesley Publishing, New York, NY; 1977.

    Google Scholar 

  15. Godbout, R.; Ingram, R.; Tilghman, S. M. Multiple regulatory elements in the intergenic region between the α-fetoprotein and albumin genes. Mol. Cell. Biol. 6:477–487; 1986.

    PubMed  CAS  Google Scholar 

  16. Goldfarb, S.; Pitot, H. C. Enzymology of highly differentiated hepatocellular carcinomas. Front. Gastrointest. Res. 2:192–242; 1976.

    Google Scholar 

  17. Harris, H.; Hopkinson, D. A. Handbook of Enzyme Electrophoresis in Human Genetics. American Elsevier Publishing Co., New York, NY; 1976.

    Google Scholar 

  18. Howard, D. J.; Stockert, R. J.; Morell, A. G. Asialoglycoprotein receptors in hepatic regeneration. J. Biol. Chem. 257:2856–2858; 1982.

    PubMed  CAS  Google Scholar 

  19. Ibsen, K. H. Interrelationships and functions of the pyruvate kinase isozymes and their variant forms: a review. Can. Res. 37:341–353; 1977.

    CAS  Google Scholar 

  20. Imamura, K.; Tanaka, T. Pyruvate kinase isozymes from rat. Meth. Enzymol. 90:150–165; 1982.

    Article  PubMed  CAS  Google Scholar 

  21. Ingram, R. S.; Scott, R. W.; Tilghman, S. M. α-fetoprotein and albumin genes are in tandem in the mouse genome. Proc. Natl. Acad. Sci. USA 78:4694–4698; 1981.

    Article  PubMed  CAS  Google Scholar 

  22. Jackson, M.; Chalkley, R. Separation of newly synthesized nucleohistone by equilibrium centrifugation in cesium chloride. Biochem. 13: 3952–3956; 1974.

    Article  CAS  Google Scholar 

  23. Knowles, B. B.; Howe, C. C.; Aden, D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209:497–499; 1980.

    Article  PubMed  CAS  Google Scholar 

  24. Lawn, R. M.; Adelman, J.; Bock, S. C., et al. The sequence of human serum albumin cDNA and its expression in E. coli. Nuc. Acids Res. 9:6103–6114; 1981.

    Article  CAS  Google Scholar 

  25. Le Dourain, N. M. An experimental analysis of liver development. Medical Biol. 53:427–455; 1975.

    Google Scholar 

  26. Maniatis, T.; Fritsch, E. F.; Sambrook, J. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY; 1982.

  27. Marie, J.; Simon, M. P.; Dreyfus, J. C., et al. One gene but two messenger RNAs encode liver L and red cell L′ pyruvate kinase. Nature 292:70–72; 1981.

    Article  PubMed  CAS  Google Scholar 

  28. Marks, P. A.; Rifkind, R. A. Erythroleukemic differentiation. Ann. Rev. Biochem. 47:419–448; 1978.

    Article  PubMed  CAS  Google Scholar 

  29. McKnight, G. S.; Palmiter, R. D. Transcriptional regulation of the ovalbumin and conalbumin genes by steriod hormones in chick oviduct. J. Biol. Chem. 243:9050–9058; 1979.

    Google Scholar 

  30. Morinaga, T.; Sakai, M.; Wegmann, T. G., et al. Primary structures of human α-fetoprotein and its mRNA. Proc. Nat. Acad. Sci. USA 80:4604–4608; 1983.

    Article  PubMed  CAS  Google Scholar 

  31. Moses, A. C.; Freinkel, A. J.; Knowles, B. B., et al. Demonstration that a human hepatoma cell line produces a specific insulin-like growth factor carrier protein. J. Clin. Endocrin. and Met. 56:1003–1008; 1983.

    Article  CAS  Google Scholar 

  32. Noguchi, T.; Inoue, H.; Nakamura, Y., et al. Molecular cloning of cDNA sequences for rat M2-type pyruvate kinase and regulation of its mRNA. J. Biol. Chem. 259:2657–2655; 1984.

    Google Scholar 

  33. Panduro, A.; Shalaby, F.; Weiner, F. R., et al. Transcriptional switch from albumin to α-fetoprotein and changes in transcription of other genes during carbon tetrachloride induced liver regeneration. Biochem. 25:1414–1420; 1986.

    Article  CAS  Google Scholar 

  34. Penhoet, E. E.; Rochman, M.; Rutter, W. J. Isolation of fructose diphosphate aldolases A, B and C. Biochem. 8:4391–4395; 1969.

    Article  CAS  Google Scholar 

  35. Schapira, F. Resurgence of fetal isozymes in cancer: study of aldolase, pyruvate kinase, lactic dehydrogenase and β-hexoseaminidase. Isozymes: Current Topics in Biological and Medical Research 5:27–75; 1981.

    CAS  Google Scholar 

  36. Schapira, F.; Hatzfeld, A.; Weber, A. Resurgence of some fetal isozymes in hepatoma. In: Markert, C. L., ed. Isozymes: Developmental Biology, vol. 3: Academic Press, New York, NY; 1975: 987–1003.

    Google Scholar 

  37. Schwartz, A. L.; Fridovich, S. E.; Lodish, H. F. Kinetics of internalization and recycling of the asialoglycoprotein receptor in a hepatoma cell line. J. Biol. Chem. 257:4230–4237; 1982.

    PubMed  CAS  Google Scholar 

  38. Stockert, R. J.; Morell, A. G. Hepatic binding protein: the galactose specific receptor of mammalian hepatocytes. Hepatology 3:750–757; 1983.

    Article  PubMed  CAS  Google Scholar 

  39. Theilman, L.; Teicher, L.; Schildkraut, C. S., et al. Growth dependent expression of a cell surface glycoprotein. Biochem. Biophys. Acta 762:475–477; 1983.

    Article  Google Scholar 

  40. Tilghman, S. M.; Belayew, A. Transcriptional control of the murine albumin/α-fetoprotein locus during development. Proc. Natl. Acad. Sci. USA 79:5254–5257; 1982.

    Article  PubMed  CAS  Google Scholar 

  41. Turcotte, B.; Guertin, B.; Chevrette, M., et al. Rat α-fetoprotein messenger RNA; 5′-end sequence and glucocorticoid suppressed liver transcription in an improved nuclear run-off assay. Nuc. Acids Res. 13:2387–2398; 1985.

    Article  CAS  Google Scholar 

  42. Twist, E. M.; Clark, H. F.; Aden, B. B., et al. Integration pattern of hepatitis B virus DNA sequences in human hepatoma cell lines. J. Virol. 37:239–243; 1981.

    PubMed  CAS  Google Scholar 

  43. Uriel, J. Retrodifferentiation and the fetal patterns of gene expression in cancer. Adv. Can. Res. 29:127–174; 1979.

    Article  CAS  Google Scholar 

  44. Weinhouse, S. Isozyme alterations, gene regulation and the neoplastic transformation. Adv. Enzyme Reg. 21:369–387; 1983.

    Article  CAS  Google Scholar 

  45. Yaffe, D.; Dym, H. Gene expression during differentiation of contractile muscle fibers. Cold Spring Harbor Symp. Quant. Biol. 37:543–547; 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, J.H., Darlington, G.J. Modulation of the liver specific phenotype in the human hepatoblastoma line Hep G2. In Vitro Cell Dev Biol 25, 217–222 (1989). https://doi.org/10.1007/BF02626182

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02626182

Key words

Navigation