Skip to main content
Log in

Spontaneous transformation and immortalization of human endothelial cells

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

A new cell line from the human umbilical vein has been established and maintained for more than 5 yr (180 generations; 900 population doublings). This strain, designated ECV304, is characterized by a cobblestone monolayer growth pattern, high proliferative potential without any specific growth factor requirement, and anchorage dependency with contact inhibition. Karyotype analysis of this cell line reveals it to be of human chromosomal constitution with a high trisomic karyotype (mode 80). Ultrastructurally, endothelium-specific Weibel-Palade bodies were identified. Although one of the endothelial cell markers, Factor VIII-related antigen (VIIIR:Ag) was negative in this cell line, immunocytochemical staining for the lectin Ulex europaeus I (UEA-I), and PHM5 (anti-human endothelium as well as glomerular epithelium monoclonal antibody) was positive, and angiotensin-converting enzyme (ACE) activity was also demonstrated. In addition, ECV304 displayed negativity for alkaline and acid phosphatase and for the epithelial marker keratin. All of these findings suggest that ECV304 cells originated from umbilical vein endothelial cells by spontaneous transformation. Ultrastructurally, no viruslike particles have been detected intracellularly. Nude mouse tumorigenicity and rabbit cornea tests were both positive. This is a report on a novel case of phenotypic alteration of normal venous endothelial cells of human origin in vitro, and generation of a transformant with indefinite life spans. This line may be useful in studies of some physiologically active factors available for medical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp. Cell Res. 104:255–262; 1977.

    Article  PubMed  CAS  Google Scholar 

  2. Chodak, G. W.; Haudenschild, C.; Gittes, R. F., et al. Angiogenic activity as a marker of neoplastic and preneoplastic lesions of the human bladder. Ann. Surg. 192:762–771; 1980.

    Article  PubMed  CAS  Google Scholar 

  3. Clemmons, D. R.; Isley, W. L.; Brown, M. T. Dialyzable factor in human serum of platelet origin stimulates endothelial cell replication and growth. Proc. Natl. Acad. Sci. USA 80:1641–1645; 1983.

    Article  PubMed  CAS  Google Scholar 

  4. Cohen, S.; Johnson, A. R.; Hurd, E. Cytotoxicity of sera from patients with scleroderma. Arthritis Rheum. 26:170–178; 1983.

    Article  PubMed  CAS  Google Scholar 

  5. Connell, N. D.; Rheinwald, J. G. Regulation of the cytoskeleton in mesothelial cells: reversible loss of keratin and increase in vimentin during rapid growth in culture. Cell 34:245–253; 1983.

    Article  PubMed  CAS  Google Scholar 

  6. Eldor, A.; Fridman, R.; Vlodavsky, I., et al. Interferon enhances prostacyclin production by cultured vascular endothelial cells. J. Clin. Invest. 73:251–257; 1984.

    PubMed  CAS  Google Scholar 

  7. Emeis, J. J.; Kooistra, T. Interleukin 1 and lipopolysaccharide induce an inhibitor of tissue-type plasminogen activator in vivo and in cultured endothelial cells. J. Exp. Med. 163:1260–1266; 1986.

    Article  PubMed  CAS  Google Scholar 

  8. Faller, D. V.; Kourembanas, S.; Ginsberg, D., et al. Immortalization of human endothelial cells by murine sarcoma viruses, without morphologic transformation. J. Cell. Physiol. 134:47–56; 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Folkman, J.; Cotran, R. Relation of vascular proliferation to tumor growth. Int. Rev. Exp. Pathol. 16:207–248; 1976.

    PubMed  CAS  Google Scholar 

  10. Gelehrter, T. D.; Sznycer-Laszuk, R. Thrombin induction of plasminogen activator-inhibitor in cultured human endothelial cells. J. Clin. Invest. 77:165–169; 1986.

    PubMed  CAS  Google Scholar 

  11. Gimbrone, M. A.; Cotran, R. S.; Leapman, S. B., et al. Tumor growth and neovascularization: an experimental model using the rabbit cornea. JNCI 52:413–427; 1974.

    PubMed  Google Scholar 

  12. Gimbrone, M. A.; Gullino, P. M. Neovascularization induced by intraocular xenografts of normal, preneoplastic, and neoplastic mouse mammary tissues. JNCI 56:305–318; 1976.

    PubMed  Google Scholar 

  13. Gimbrone, M. A.; Fareed, G. C. Transformation of cultured human vascular endothelium by SV40 DNA. Cell 9:685–693; 1976.

    Article  PubMed  Google Scholar 

  14. Gore, I.; Takada, M.; Austin, J. Ultrastructural basis of experimental thrombocytopenic purpura. Arch. Pathol. 90:197–205; 1970.

    PubMed  CAS  Google Scholar 

  15. Gorman, S. D.; Hoffman, E.; Nichols, W. W., et al. Spontaneous transformation of a cloned cell line of normal diploid bovine vascular endothelial cells. In Vitro 20:339–345; 1984.

    Article  PubMed  CAS  Google Scholar 

  16. Grinspan, J. B.; Mueller, S. N.; Levine, E. M. Bovine endothelial cells transformed in vitro by benzo(a)pyrene. J. Cell Physiol. 114:328–338; 1983.

    Article  PubMed  CAS  Google Scholar 

  17. Hajjar, K. A.; Harpel, P. C.; Jaffe, E. A., et al. Binding of plasminogen to cultured human endothelial cells. J. Biol. Chem. 261:11656–11662; 1986.

    PubMed  CAS  Google Scholar 

  18. Hancock, W. W.; Atkins, R. C. Monoclonal antibodies to human glomerular cells: a marker for glomerular epithelial cells. Nephron 33:83–90; 1983.

    Article  PubMed  CAS  Google Scholar 

  19. Hayes, L. W.; Goguen, C. A.; Ching, S. F., et al. Angiotensin-converting enzyme: accumulation in medium from cultured endothelial cells. Biochem. Biophys. Res. Commun. 82: 1147–1153; 1978.

    Article  PubMed  CAS  Google Scholar 

  20. Hobson, B.; Denekamp, J. Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br. J. Cancer 49:405–413; 1984.

    PubMed  CAS  Google Scholar 

  21. Holthöfer, H.; Virtanen, I.; Kariniemi, A. L., et al. Ulex europaeus I lectin as a marker for vascular endothelium in human tissues. Lab. Invest. 47:60–66; 1982.

    PubMed  Google Scholar 

  22. Jaffe, E. A.; Nachman, R. L.; Becker, C. G., et al. Culture of human endothelial cells derived from umbilical veins. J. Clin. Invest. 52:2745–2756; 1973.

    PubMed  CAS  Google Scholar 

  23. Kakunaga, T. Neoplastic transformation of human diploid fibroblast cells by chemical carcinogens. Proc. Natl. Acad. Sci. USA 75:1334–1338; 1978.

    Article  PubMed  CAS  Google Scholar 

  24. Maciag, T.; Kadish, J.; Wilkins, L., et al. Organizational behavior of human umbilical vein endothelial cells. J. Cell Biol. 94:511–520; 1982.

    Article  PubMed  CAS  Google Scholar 

  25. Maruyama, Y. The human endothelial cell tissue culture. Z. Zellforsch. Microsk. Anat. 60:69; 1963.

    Article  CAS  Google Scholar 

  26. Meischke, H. R. C. In vitro transformation by bovine papilloma virus. J. Gen. Virol. 43:473–487; 1979.

    Article  PubMed  CAS  Google Scholar 

  27. Mukai, K.; Rosai, J.; Burgdorf, W. H. C. Localization of factor VIII-related antigen in vascular endothelial cells using an immunoperoxidase method. Am. J. Surg. Pathol. 4:273–276; 1980.

    Article  PubMed  CAS  Google Scholar 

  28. Nichols, W. W.; Buynak, E. B.; Bradt, C., et al. Cytogenetic evaluation of human endothelial cell cultures. J. Cell Physiol. 132:453–462; 1987.

    Article  PubMed  CAS  Google Scholar 

  29. Olander, J. V.; Bremer, M. E.; Marasa, J. C., et al. Fibrinenhanced endothelial cell organization. J. Cell. Physiol. 125:1–9; 1985.

    Article  PubMed  CAS  Google Scholar 

  30. Rabinovitch, M.; Andreucci, D. A histochemical study of “acid” and “alkaline” phosphatase distribution in normal human bone marrow smears. Blood 4:580–594; 1949.

    PubMed  CAS  Google Scholar 

  31. Sprengers, E. D.; Verheijen, J. H.; Van Hinsbergh, V. W. M., et al. Evidence for the presence of two different fibrinolytic inhibitors in human endothelial cell conditioned medium. Biochem. Biophys. Acta 801:163–170; 1984.

    PubMed  CAS  Google Scholar 

  32. Thornton, S. C.; Mueller, S. N.; Levine, E. M. Human endothelial cells: use of heparin in cloning and long-term serial cultivation. Science 222:623–625; 1983.

    Article  PubMed  CAS  Google Scholar 

  33. Van Hinsbergh, V. W. M.; Binnema, D.; Scheffer, M. A., et al. Production of plasminogen activators and inhibitor by serially propagated endothelial cells from adult human blood vessels. Arteriosclerosis 7:389–400; 1987.

    PubMed  Google Scholar 

  34. Weibel, E. R.; Palade, G. E. New cytoplasmic components in arterial endothelia. J. Cell Biol. 23:101–112; 1964.

    Article  PubMed  CAS  Google Scholar 

  35. Yamashita, Y.; Kobayashi, M.; Hasegawa, S., et al. Establishment of serum-free culture of human vascular endothelial cells. Tissue Culture Research Communication 7:139(abstract); 1988 (in Japanese).

    Google Scholar 

  36. Yanagisawa, M.; Kurihara, H.; Kimura, S., et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415; 1988.

    Article  PubMed  CAS  Google Scholar 

  37. Yuspa, S. H.; Hawley-Nelson, P.; Koehler, B., et al. A survey of transformation markers in differentiating epidermal cell lines in culture. Cancer Res. 40:4694–4703; 1980.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, K., Sawasaki, Y., Hata, JI. et al. Spontaneous transformation and immortalization of human endothelial cells. In Vitro Cell Dev Biol 26, 265–274 (1990). https://doi.org/10.1007/BF02624456

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624456

Key words

Navigation