Skip to main content
Log in

A continuous alveolar macrophage cell line: Comparisons with freshly derived alveolar macrophages

In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Responses of a recently developed rat alveolar macrophage cell (NR8383.1) line were compared to those of freshly derived alveolar macrophages in vitro. Marked inter- and intraspecies heterogeneity in levels of phagocytosis of unopsonizedPseudomonas aeruginosa or zymosan was noted among freshly derived alveolar macrophages from rats, rabbits, and baboons. In contrast, phagocytic responses of alveolar macrophage cell line were predictable and highly reproducible. Similar results were obtained in measuring oxidative burst, as indicated by the production of H2O2 and luminol-enhanced chemiluminescence. Responses were again highly variable in freshly derived alveolar macrophages stimulated with zymosan or phorbol myristic acetate; moreover, freshly derived alveolar macrophages exhibited a wide range of chemiluminescence activity in unstimulated cultures. Results strongly suggest that data derived from the continuous alveolar macrophage culture NR8383.1 can be extrapolated to freshly derived alveolar macrophages of various species, and in many experiments will be useful in avoiding the significant animal-to-animal variance observed among freshly derived cell preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Babior, B. M. The respiratory burst of phagocytes. J. Clin. Invest. 73:599–601; 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Berlin, R. D.; Oliver, J. M.; Walter, R. J. Surface functions during mitosis: phagocytosis, pinocytosis, and mobility of surface bound Con A. Cell 15:327–341; 1978.

    Article  PubMed  CAS  Google Scholar 

  3. Brestel, E. P. Co-oxidation of luminol by hypochlorite and hydrogen peroxide implications for neutrophil chemiluminescence. Biochem. Biophys. Res. Commun. 126:482–488; 1985.

    Article  PubMed  CAS  Google Scholar 

  4. Chandler, D. B.; Fuller, W. C.; Jackson, R. M., et al. Fractionation of rat alveolar macrophages by isopycnic centrifugation: morphological, cytochemical, biochemical, and functional properties. J. Leuk. Biol. 39:371–383; 1986.

    CAS  Google Scholar 

  5. Damiani, G.; Kiyotaki, C.; Soeller, W., et al. Macrophage variants in oxygen metabolism. J. Exp. Med. 152:808–822; 1980.

    Article  PubMed  CAS  Google Scholar 

  6. Drath, D. B.; Karnovsky, M. L. Superoxide production by phagocytic leukocytes. J. Exp. Med. 141:257–262; 1975.

    Article  PubMed  CAS  Google Scholar 

  7. Escobedo, M. B.; Hilliard, J. L.; Smith, F., et al. A baboon model of bronchopulmonary dysplasia. I. Clinical features. Exp. Mol. Pathol. 27:335–350; 1982.

    Google Scholar 

  8. Ezekowitz, R. A. B.; Sim, R. B.; Hill, M., et al. Local opsonization by secreted macrophage complement components. Role of receptors for complement in uptake of zymosan. J. Exp. Med. 159:244–260; 1984.

    Article  PubMed  CAS  Google Scholar 

  9. Fels, A. O. S.; Cohn, Z. A. The alveolar microphage. J. Appl. Physiol. 60:353–369; 1986.

    PubMed  CAS  Google Scholar 

  10. Gerberick, G. F.; Willoughby, J. B.; Willoughby, W. F. Serum factor requirement for reactive oxygen intermediate release by rabbit alveolar macrophages. J. Exp. Med. 161:392–408; 1985.

    Article  PubMed  CAS  Google Scholar 

  11. Hatch, G. E.; Spock, A.; Gardner, D. E., et al. Differences between particulate and peptide stimuli on activation of oxidant production in alveolar macrophages. Chest 77:267–269; 1980.

    PubMed  CAS  Google Scholar 

  12. Helmke, R. J.; Boyd, R. L.; German, V. F., et al. From growth factor dependence to growth responsiveness: the genesis of an alveolar macrophage cell line. In Vitro 23:567–574; 1987.

    CAS  Google Scholar 

  13. Hoidal, J. R.; Beall, G. D.; Rasp, F. L. Comparison of the metabolism of alveolar macrophages from humans, rats, and rabbits: response to heat-killed bacteria or phorbol myristate acetate. J. Lab. Clin. Med. 92:787–794; 1978.

    PubMed  CAS  Google Scholar 

  14. Holian, A.; Dauber, J. H.; Diamond, M. S., et al. Separation of bronchoalveolar cells from the guinea pig on continuous gradients of percoll: functional properties of fractioned lung macrophages. J. Reticuloendothel. Soc. 33:157–164; 1983.

    PubMed  CAS  Google Scholar 

  15. Jackett, P. S.; Andrew, P. W.; Aber, V. R., et al. Hydrogen peroxide and superoxide release by alveolar macrophages from normal and BCG-vaccinated guinea pigs after intravenous challenge withMycobacterium tuberculosis. Br. J. Exp. Pathol. 62:419–428; 1981.

    PubMed  CAS  Google Scholar 

  16. Li, C. Y.; Lam, K. W.; Yam, L. T. Esterases in human leukocytes. J. Histochem. Cytochem. 21:1–12; 1973.

    PubMed  CAS  Google Scholar 

  17. Morahan, P. S. Macrophage nomenclature: Where are we going? (editorial). J. Reticuloendothel. Soc. 27:223–231; 1980.

    PubMed  CAS  Google Scholar 

  18. Nguyen, B. T.; Peterson, P. K.; Verbrugh, H. A., et al. Differences in phagocytosis and killing by alveolar macrophages from humans, rabbits, rats, and hamsters. Infect. Immun. 36:504–509; 1982.

    PubMed  CAS  Google Scholar 

  19. Ralph, P. Continuous cell lines with properties of mononuclear phagocytes. In: Adams, D. O.; Edelson, P. J.; Koren, H. S., eds. Methods for studying mononuclear phagocytes, vol. 4. New York: Academic Press; 1981:155–173.

    Google Scholar 

  20. Ralph, P. Continuous macrophage cell lines—their use in the study of induced and constitutive macrophage properties and cytotoxicity. In: Lymphokines, vol. 4. New York: Academic Press; 1981:175–195.

    Google Scholar 

  21. Rothlein, R.; Gallily, R.; Kim, Y. B. Development of alveolar macrophages in specific pathogen-free and germ-free Minnesota miniature swine. J. Reticucoendothel. Soc. 6:483–495; 1981.

    Google Scholar 

  22. Ruch, W.; Cooper, P. H.; Baggiolini, M. Assay of H2O2 production by macrophages and neutrophils with homovanillic acid and horseradish peroxidase. J. Immunol. Methods. 63:347–357; 1983.

    Article  PubMed  CAS  Google Scholar 

  23. Shellito, J.; Kaltreider, B. Heterogeneity of immunologic function among subfractions of normal rat alveolar macrophages. Am. Rev. Respir. Dis. 129:747–753; 1983.

    Google Scholar 

  24. Speert, D. P.; Eftekhar, F.; Puterman, M. L. Nonopsonic phagocytosis of strains ofPseudomonas aeruginosa from cystic fibrosis patients. Infect. Immunol. 43:1006–1011; 1984.

    CAS  Google Scholar 

  25. Speert, D. P.; Silverstein, S. C. Phagocytosis of unopsonized zymosan by human monocyte-derived macrophages: maturation and inhibition by mannan. J. Leukocyte. Biol. 38:655–658; 1985.

    PubMed  CAS  Google Scholar 

  26. Sweeney, T. D.; Castranova, V.; Bowman, L., et al. Factors which affect superoxide anion release from rat alveolar macrophages. Exp. Lung Res. 2:85–96; 1981.

    PubMed  CAS  Google Scholar 

  27. Tsan, M. F. Stimulation of the hexose monophosphate shunt independent of hydrogen peroxide and superoxide production in rabbit alveolar macrophages during phagocytosis. Blood 50:935–945; 1977.

    PubMed  CAS  Google Scholar 

  28. Uchida, T.; Ju, S.; Fay, A., et al. Functional analysis of macrophage hybridomas. I. Production and initial characterization. J. Immunol. 134:772–778; 1985.

    PubMed  CAS  Google Scholar 

  29. Ward, P. A.; Duque, R. E.; Sulavik, M. C., et al.In vitro andin vivo stimulation of rat neutrophils and alveolar macrophages by immune complexes, production of O2 and H2O2. Am. J. Pathol. 110:297–309; 1983.

    PubMed  CAS  Google Scholar 

  30. Williams, A. J.; Cole, P. J.In vitro stimulation of alveolar macrophage metabolic activity by polystyrene in the absence of phagocytosis. Br. J. Exp. Pathol. 62:1–7; 1981.

    PubMed  CAS  Google Scholar 

  31. Yanai, M.; Quie, P. G. Chemiluminescence by polymorphonuclear leukocytes adhering to surfaces. Infect. Immunol. 32:1181–1186; 1981.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by grant A119811 and SCOR HL23578, from the National Institutes of Health, Bethesda, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helmke, R.J., German, V.F. & Mangos, J.A. A continuous alveolar macrophage cell line: Comparisons with freshly derived alveolar macrophages. In Vitro Cell Dev Biol 25, 44–48 (1989). https://doi.org/10.1007/BF02624409

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624409

Key words

Navigation