Skip to main content
Log in

Monitoring minimal residual disease in acute leukemia: expectations, possibilities and initial clinical results

  • Reviews
  • Published:
International Journal of Clinical and Laboratory Research

Summary

Therapy of acute leukemia may be improved by a more accurate assessment of the effects of treatment on tumor burden and by anticipating relapse with greater precision. The sensitivity limit of assessing residual disease by morphology is usually 5%. Several alternative approaches are available to study minimal residual disease, defined as the presence of leukemic cells not detectable by morphology. These include studies of chromosomal abnormalities by conventional karyotyping, flow cytometry, in situ hybridization and polymerase chain reaction (PCR), investigation of gene rearrangements by Southern blotting and PCR, and immunological methods. Some of these techniques enable the detection of 1 leukemic cells among 10 000 or more normal cells. In the following, the advantages and limitations of sensitive methods for detecting small numbers of leukemic cells are reviewed. The rationale for monitoring residual disease in acute leukemia and the initial results of studies correlating minimal residual disease and clinical outcome are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anastasi J, Le Beau MM, Vardiman JW, Westbrook CA, Detection of numerical chromosomal abnormalities in neoplastic hematopoietic cells by in situ hybridization with a chromosome-specific probe. Am J Pathol 136:131, 1990

    PubMed  CAS  Google Scholar 

  2. Beishuizen A, Verhoeven MJ, Halen K, Van Wering ER, Van Dongen JJM, Differences in immunoglobulin and T-cell receptor gene rearrangement patterns in acute lymphoblastic leukemia between diagnosis and replase. Acute leukemias. III. Prognostic factors and treatment strategies. Hematol Blood Transfusion (in press)

  3. Bernard A, Raynal B, Lemerle J, Boumsell L, Changes in surface antigens on malignant T cells from lymphoblastic lymphomas at relapse: an appraisal with monoclonal antibodies and microfluorimetry. Blood 59:809, 1982

    PubMed  CAS  Google Scholar 

  4. Biondi A, Yokota S, Hansen-Hagge TE, Rossi V, Giudici G, Maglia O, Basso G, Tell C, Masera G, Bartram CR, Minimal residual disease in childhood acute lymphoblastic leukemia: analysis of patients in continuous complete remission or with consecutive relapse. Leukemia 6:282, 1992

    PubMed  CAS  Google Scholar 

  5. Bradstock KF, Janossy G, Tidman N, Papageorgiou ES, Prentice HG, Willoughby M, Hoffbrand AV, Immunological monitoring of residual disease in treated thymic acute lymphoblastic leukaemia. Leuk Res 5:301, 1981

    Article  PubMed  CAS  Google Scholar 

  6. Bradstock KF, Papageorgiou ES, Janossy G, Diagnosis of meningeal involvement in patients with acute lymphoblastic leukaemia using immunoflourescence for terminal transferase. Cancer 47:2478, 1981

    Article  PubMed  CAS  Google Scholar 

  7. Bregni M, Siena S, Neri A, Bassan R, Barbui T, Delia D, Bonadonna G, Dalla-Favera R, Gianni AM, Minimal residual disease in acute lymphoblastic leukemia detected by immune selection and gene rearrangement analysis. J Clin Oncol 7:338, 1989

    PubMed  CAS  Google Scholar 

  8. Brisco MJ, Condon J, Hughes E, Neoh SH, Nicholson I, Sykes PJ, Tauro G, Ekert H, Waters K, Toogood I, Seshadri R, Morley AA, Prognostic significance of detection of monoclonality in remission marrow in acute lymphoblastic leukemia in childhood. Leukemia 7:1514, 1993

    PubMed  CAS  Google Scholar 

  9. Campana D, Applications of cytometry to study acute leukemia: in vitro determination of drug sensitivity and detection of minimal residual disease. Cytometry (in press)

  10. Campana D, Thompson JS, Amlot P, Brown S, Janossy G, The cytoplasmic expression of CD3 antigens in normal and malignant cells of the T lymphoid lineage. J Immunol 138:648, 1987

    PubMed  CAS  Google Scholar 

  11. Campana D, Coustan-Smith E, Janossy G, The immunological detection of minimal residual disease in acute leukemia. Blood 76:163, 1990

    PubMed  CAS  Google Scholar 

  12. Campana D, Yokota S, Coustan-Smith E, Hansen-Hagge TE, Janossy G, Bartram CR, The detection of residual acute leukemia cells with immunologic methods and polymerase chain reaction: a comparative study. Leukemia 4:609, 1990

    PubMed  CAS  Google Scholar 

  13. Campana D, Coustan-Smith E, Behm FG, The definition of remission in acute leukemia with immunologic techniques. Bone Marrow Transplant 8:429, 1991

    PubMed  CAS  Google Scholar 

  14. D'Auriol L, Macintyre E, Galibert F, Sigaux F, In vitro amplification of T cell gamma gene rearrangements: a new tool for the assessment of minimal residual disease in acute lymphoblastic leukemias. Leukemia 3:155, 1989

    PubMed  Google Scholar 

  15. Deane M, Norton JD, Detection of immunoglobulin gene rearrangement in B lymphoid malignancies by polymerase chain reaction gene amplification. Br J Haematol 74:251, 1990

    PubMed  CAS  Google Scholar 

  16. Deane M, Hoffbrand AV, Detection of minimal residual disease in ALL. In: Freireich EJ, Kantarjian H (eds) Leukemia: advances, research and treatment. Kluwer, Norwell, MA, p 135, 1993

    Google Scholar 

  17. Downing JR, Head DR, Curcio-Brint AM, Hulshof MG, Motroni TA, Raimondi SC, Carroll AJ, Drabkin HA, Willman C, Theil KS, Cicin CI, Erickson P, An AML1/ETO fusion transcript is consistently detected by RNA-based polymerase chain reaction in acute myelogenous leukemia containing the (8;21)(q22;q22) translocation. Blood 81:2860, 1993

    PubMed  CAS  Google Scholar 

  18. Drach J, Drach D, Glassl H, Gattringer C, Huber H, Flow cytometric determination of atypical antigen expression in acute leukemia for the study of minimal residual disease. Cytometry 13:893, 1992

    Article  PubMed  CAS  Google Scholar 

  19. Fey MF, Kulozik AE, Hansen-Hagge TE, Tobler A, The polymerase chain reaction: a new tool for detection of minimal residual in haematological malignancies. Eur J Cancer 27:89, 1991

    Article  PubMed  CAS  Google Scholar 

  20. Freireich EJ, Cork A, Stass SA, McCredie KB, Keating MJ, Estey EH, Kantarjian HM, Trujillo JM, Cytogenetics for detection of minimal residual disease in acute myeloblastic leukemia. Leukemia 6:500, 1992

    PubMed  CAS  Google Scholar 

  21. Goldie J, Coldman A, A mathematical model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep 63:1727, 1979

    PubMed  CAS  Google Scholar 

  22. Greaves MF, Differentiation-linked leukemogenesis in lymphocytes. Science 234:697, 1986

    Article  PubMed  CAS  Google Scholar 

  23. Greaves MF, Paxton A, Janossy G, Pain C, Johnson S, Lister TA, Acute lymphoblastic leukaemia associated antigen. III. Alterations in expression during treatment and in relapse. Leuk Res 4:1, 1980

    Article  PubMed  CAS  Google Scholar 

  24. Gu Y, Nakamura T, Alder H, Prasad R, Canaani O, Cimino G, Croce CM, Canaani E, The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related toDrosophila trithorax, to the AF-4 gene. Cell 71:701, 1992

    Article  PubMed  CAS  Google Scholar 

  25. Hann IM, Morris Jones PH, Evans DIK, Discrepancy of bone marrow aspirations in acute lymphoblastic leukaemia in relapse. Lancet I:1215, 1977

    Article  Google Scholar 

  26. Hansen-Hagge TE, Yokota S, Bartram CR, Detection of minimal residual disease in acute lymphoblastic leukemia by in vitro amplification of rearranged T-cell receptor delta chain sequences. Blood 74:1762, 1989

    PubMed  CAS  Google Scholar 

  27. Holt C, Arensen E, Carstens B, McGavren L, Persistence of pseudodiploidy del(16q) in remission bone marrows of two children with acute lymphoblastic leukemia. Proc Am Soc Clin Oncol 8:218, 1989

    Google Scholar 

  28. Hooijkaas H, Hahlen K, Adriaansen HJ, Dekker I, Van Zanen GE, Van Dongen JJM, Terminal deoxynucleotidyl transferase positive cells in cerebrospinal fluid and development of overt CNS leukemia: a 5-year follow-up study in 113 children with TdT positive leukemia or non-Hodgkin's lymphoma. Blood 74:416, 1989

    PubMed  CAS  Google Scholar 

  29. Hunger SP, Galili N, Carroll AJ, Crist WM, Link MP, Cleary ML, The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute leukemias. Blood 74:687, 1991

    Google Scholar 

  30. Jacobs P, Discrepant bone marrow aspirations in leukaemia. Lancet II:355, 1977

    Article  Google Scholar 

  31. Janossy G, Bollum F, Bradstock KF, Ashley J, Cellular phenotypes of normal and leukaemic haemopoietic cells determined by analysis with selected antibody combinations. Blood 56:430, 1980

    PubMed  CAS  Google Scholar 

  32. Janossy G, Campana D, Burnett A, Coustan-Smith E, Timms A, Bekassy AN, Hann I, Alcorn MJ, Totterman T, Simonsson B, Bengtsson M, Poncelet P, Laurent JC, Autologous bone marrow transplantation in acute lymphoblastic leukemia-preclinical immunologic studies. Leukemia 2:485, 1988

    PubMed  CAS  Google Scholar 

  33. Jonsson OG, Kitchens RL, Baer RJ, Buchanan GR, Smith RG, Rearrangements of the tal-1 locus as clonal markers for T cell acute lymphoblastic leukemia. J Clin Invest 87:2029, 1991

    PubMed  CAS  Google Scholar 

  34. Kamps MP, Look AT, Baltimore D, The human t(1;19) translocation in pre-B ALL produces multiple nuclear E2A-PBX1 fusion proteins with differing transforming potential. Genes Dev 5:358, 1991

    PubMed  CAS  Google Scholar 

  35. Katz F, Ball L, Gibbons B, Chessells J, The use of DNA probes to monitor minimal residual disease in childhood acute lymphoblastic leukaemia. Br J Haematol 73:173, 1989

    PubMed  CAS  Google Scholar 

  36. Kiyoi H, Naoe T, Horibe K, Ohno R, Characterization of the immunoglobulin heavy chain complementarity determining region (CDR)-III sequences from human B cell precursor acute lymphoblastic leukemia cells. J Clin Invest 89:739, 1992

    Article  PubMed  CAS  Google Scholar 

  37. Kranz BR, Thiel E, Thierfelder S, Immunocytochemical identification of meningeal leukemia and lymphoma: poly-l-lysine-coated slides permit multimarker analysis even with minute cerebrospinal fluid cell specimens. Blood 73:1942, 1989

    PubMed  CAS  Google Scholar 

  38. Krishan A, Rapid cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 66:188, 1975

    Article  PubMed  CAS  Google Scholar 

  39. Longo L, Pandolfi PP, Biondi A, Rambaldi A, Mencarelli A, Lo Coco F, Diverio D, Pegorato L, Avanzi G, Tabilio A, Zangrilli D, Alcalay M, Donti E, Grignani F, Pellicci PG, Rearrangements and aberrant expression of the retinoic acid receptor alpha gene in acute promyelocytic leukemias. J Exp Med 172:1571, 1990

    Article  PubMed  CAS  Google Scholar 

  40. Mahmoud HH, Rivera GK, Hancock ML, Krance RA, Kun LE, Behm FG, Ribeiro RC, Sandlund JT, Crist WM, Pui CH, Low leukocyte counts with blast cells in cerebrospinal fluid of children with newly diagnosed acute lymphoblastic leukemia. N Engl J Med 329:314, 1993

    Article  PubMed  CAS  Google Scholar 

  41. Martens ACM, Schultz FW, Hagenbeek A, Nonhomogeneous distribution of leukemia in the bone marrow during minimal residual disease. Blood 70:1073, 1987

    PubMed  CAS  Google Scholar 

  42. Mathe G, Schwarzenberg L, Mery AM, Cattan A, Schneider M, Amiel JL, Schlumberger JR, Poisson J, Wajcner G, Extensive histological and cytological survey of patients with acute leukaemia in “complete remission”. BMJ 1:640, 1966

    Article  PubMed  CAS  Google Scholar 

  43. Miller WH, Levine K, DeBlasio A, Frankel SR, Dmitravsky E, Warrell RP Jr, Detection of minimal residual disease in acute promyelocytic leukemia by reserve transcription polymerase chain reaction assay for the PML/RAR-alpha fusion mRNA. Blood 82:1689, 1993

    PubMed  CAS  Google Scholar 

  44. Miyamura K, Tanimoto M, Morishima Y, Horibe K, Yamamoto K, Akatsuka M, Kodera Y, Kojima S, Matsuyama K, Hirabayashi N, Yaziki M, Imai K, Onozawa Y, Kanamaru A, Mizutani S, Saito H, Detection of Philadelphia chromosome-positive acute lymphoplastic leukemia by polymerase chain reaction: possible eradication of minimal residual disease by marrow transplantation. Blood 79:1366, 1992

    PubMed  CAS  Google Scholar 

  45. Neale GAM, Menarguez J, Kitchingman GR, Fitzgerald TJ, Koelher M, Mirro J Jr, Goorha RM, Detection of minimal residual disease in T-cell acute lymphoblastic leukemia using polymerase chain reaction predicts impending relapse. Blood 78:739, 1991

    PubMed  CAS  Google Scholar 

  46. Negrin RS, Kiem HP, Schmidt-Wolf IGH, Blume KG, Cleary ML, Use of polymerase chain reaction to monitor the effectiveness of ex vivo tumor cell purging. Blood 77:654, 1991

    PubMed  CAS  Google Scholar 

  47. Nizet Y, Van Daele S, Lewalle P, Vaerman JL, Philippe M, Vermylen C, Cornu G, Ferrant A, Michaux JL, Martiat P, Long-term follow-up of residual disease in acute lymphoblastic leukemia patients in complete remission using clonogeic IgH probes and the polymerase chain reaction. Blood 82:1618, 1993

    PubMed  CAS  Google Scholar 

  48. Nucifora G, Larson RA, Rowley JD, Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood 82:712, 1992

    Google Scholar 

  49. Peiper S, Stass SA, Bollum FJ, Detection of leukaemic lymphoblasts in CSF. Lancet II:80, 1980

    Google Scholar 

  50. Potter MN, Cross NCP, Van Dongen JJM, Saglio G, Oakhill A, Bartram CR, Goldman JM, Molecular evidence of minimal residual disease after treatment for leukaemia and lymphoma: an updated meeting report and review. Leukemia 7:1302, 1993

    PubMed  CAS  Google Scholar 

  51. Potter MN, Steward CG, Oakhill A, The significance of detection of minimal residual disease in childhood acute lymphoblastic leukemia. Br J Haematol 83:412, 1993

    PubMed  CAS  Google Scholar 

  52. Privitera E, Kamps MP, Hayashi Y, Inaba T, Shapiro LH, Raimondi SC, Behm FG, Hendershot L, Carroll AJ, Baltimore D, Look AT, Different molecular consequences of the 1;19 chromosomal translocation in childhood B-cell precursor acute lymphoblastic leukemia. Blood 79:1781, 1992

    PubMed  CAS  Google Scholar 

  53. Rabinovitch PS, Torres RM, Engel D, Simultaneous cell cycle analysis and two-color surface immunofluorescence using 7-amino-actinomycin D and single laser excitation: applications to study cell activation and cell cycle of murine Ly-1 B cells. J Immunol 136:2769, 1986

    PubMed  CAS  Google Scholar 

  54. Rivera GK, Raimondi SC, Hancock MJ, Behm FG, Pui CH, Abromowitch M, Mirro J, Ochs JS, Look AT, Williams DL, Simone JV, Crist WM, Improved outcome in childhood acute lymphoblastic leukaemia with reinforced early treatment and rotational combination chemotherapy. Lancet I:61, 1991

    Article  Google Scholar 

  55. Ryan DH, Van Dongen JJM, Detection of residual disease in acute leukemia using immunological markers. In: Bennett JM, Foon KA (eds) Immunologic approaches to the classification and management of lymphomas and leukemias. Kluwer, Norwell, MA, p 173, 1988

    Google Scholar 

  56. Schmid I, Uittenboggart CH, Giorgi JV, A gentle fixation and permeabilization methods for combined cell surface and intracellular staining with improved precision in DNA quantification. Cytometry 12:279, 1991

    Article  PubMed  CAS  Google Scholar 

  57. Sklar J, Polymerase chain reaction: the molecular microscope of residual disease. J Clin Oncol 9:1521, 1991

    PubMed  CAS  Google Scholar 

  58. Stass S, Mirro J, Melvin S, Pui CH, Murphy SB, Williams D, Lineage switch in acute leukemia. Blood 64:701, 1984

    PubMed  CAS  Google Scholar 

  59. Terstappen LWMM, Loken MR, Myeloid cell differentiation in normal bone marrow and acute myeloid leukemia assessed by multidimensional flow cytometry. Anal Cell Pathol 2:229, 1990

    PubMed  CAS  Google Scholar 

  60. Tkachuk DC, Kohler S, Cleary ML, Involvement of a homology ofDrosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 71:691, 1992

    Article  PubMed  CAS  Google Scholar 

  61. Uckun FM, Kersey JH, Haake R, Weisdorf D, Nesbit ME, Ramsay NKC, Pretransplantation burden of leukemic progenitor cells as a predictor of relapse after bone marrow transplantation for acute lymphoblastic leukemia. N Engl J Med 329:1296, 1993

    Article  PubMed  CAS  Google Scholar 

  62. Van Denderen J, Hermans A, Meeuwsen T, Troelstra C, Zegers N, Boersma W, Grosveld G, Van Ewijk W, Antibody recognition of the tumor-specific bcr-abl joining region in chronic myeloid leukemia. J Exp Med 169:87, 1989

    Article  PubMed  Google Scholar 

  63. Van Dongen JJM, Hooijkaas H, Adriaansen HJ, Hahlen K, Van Zanen GE, Detection of minimal residual acute lymphoblastic leukemia by immunological marker analysis: possibilities and limitations. In: Hagenbeek A, Lowenberg B (eds) Minimal residual disease in acute leukemia. Nijhoff, Dordrecht, p 113, 1986

    Google Scholar 

  64. Van Dongen JJM, Wolvers-Tettero ILM, Analysis of immunoglobulin and T cell receptor genes. II. Possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin Chim Acta 198:93, 1991

    Article  PubMed  Google Scholar 

  65. Van Dongen JJM, Breit TM, Adriaansen HJ, Beishizen A, Hooijkaas H, Detection of minimal residual disease in acute leukemia by immunological marker analysis and polymerase chain reaction. Leukemia 6:47, 1992

    PubMed  Google Scholar 

  66. Veelken H, Tycko B, Sklar J, Sensitive detection of clonal antigen receptor gene rearrangements for the diagnosis and monitoring of lymphoid neoplasms by a polymerase chain reaction-mediated ribonuclease protection assay. Blood 78:1318, 1991

    PubMed  CAS  Google Scholar 

  67. Wasserman R, Galili N, Ito Y, Silber JH, Reichard BA, Shane S, Womer RB, Lange B, Rovera G, Residual disease at the end of the induction therapy as a predictor of relapse during therapy in childhood B-lineage acute lymphoblastic leukemia. J Clin Oncol 10:1879, 1992

    PubMed  CAS  Google Scholar 

  68. Yamada M, Hudson S, Tournay O, Bittenbender S, Shane SS, Lange B, Tsujimoto Y, Caton AJ, Rovera G, Detection of minimal disease in hematopoietic malignancies of the B-cell lineage by using third-complementarity-determining region (CDR-III) specific probes. Proc Natl Acad Sci USA 86:5123, 1989

    Article  PubMed  CAS  Google Scholar 

  69. Yamada M, Wasserman R, Lange B, Reichard BA, Womer RB, Rovera G, Minimal residual disease in childhood B-lineage lymphoblastic leukemia. N Engl J Med 323:448, 1990

    Article  PubMed  CAS  Google Scholar 

  70. Yokota S, Hansen-Hagge TE, Ludwig WD, Reiter A, Raghavachar A, Kleihauer E, Bartram CR, Use of polymerase chain reactions to monitor minimal residual disease in acute lymphoblastic leukemia patients. Blood 77:331, 1991

    PubMed  CAS  Google Scholar 

  71. Zehnbauer BA, Pardoll DM, Burke PJ, Graham ML, Vogelstein B, Immunoglobulin gene rearrangement in remission bone marrow specimens from patients with acute lymphoblastic leukemia. Blood 67:835, 1986

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campana, D. Monitoring minimal residual disease in acute leukemia: expectations, possibilities and initial clinical results. Int J Clin Lab Res 24, 132–138 (1994). https://doi.org/10.1007/BF02592442

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02592442

Key words

Navigation