Skip to main content
Log in

Bin packing can be solved within 1 + ε in linear time

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

For any listL ofn numbers in (0, 1) letL* denote the minimum number of unit capacity bins needed to pack the elements ofL. We prove that, for every positive ε, there exists anO(n)-time algorithmS such that, ifS(L) denotes the number of bins used byS forL, thenS(L)/L*≦1+ε for anyL providedL* is sufficiently large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest andR. E. Tarjan, Time bounds for selection,J. Comput. Sys. Sci.,7 (1973), 448–461.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. R. Garey, R. L. Graham, D. S. Johnson andA. C. Yao, Multiprocessor scheduling as generalized bin-packing,J. Combinatorial Theory A21 (1976), 257–298.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. R. Garey andD. S. Johnson,Computers and Intractability, Freeman, San Francisco, 1979.

    MATH  Google Scholar 

  4. M. R. Garey andD. S. Johnson, Approximation algorithms for bin packing problems: a survey,preprint 1980.

  5. D. S. Johnson,Near optimal bin packing algorithms, Ph. D. Th., MIT, Cambridge, Mass., June 1973.

    Google Scholar 

  6. D. S. Johnson, Fast algorithms for bin packing,J. Comptr. Syst. Sci. 8 (1974), 272–314.

    MATH  Google Scholar 

  7. D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey andR. L. Graham, Worst case bounds for simple one-dimensional packing algorithms,SIAM J. Comptg. 3 (1974), 299–325.

    Article  MathSciNet  Google Scholar 

  8. R. M. Karp, Reducibility among combinatorial problems, in:Complexity of Computer calculations. (R. E. Miller and J. W. Thatcher, Eds.) Plenum Press, New York, 1972, 85–103.

    Google Scholar 

  9. D. E. Knuth,The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley, Reading, Mass., 1973.

    Google Scholar 

  10. A. Schönhage, M. S. Paterson andN. Pippenger, Finding the median,J. Comput. Sys. Sci. 13 (1976), 184–199.

    MATH  Google Scholar 

  11. A. C. Yao, New algorithms for bin packing.J. ACM 27, 2 (Apr. 1980).

    Article  Google Scholar 

  12. J. L. Bentley, Probabilistic analysis of algorithms,Applied Probability—Computer Science, the Interface, Boca Raton, Florida, January 1981.

    Google Scholar 

  13. P. C. Gilmore andR. E. Gomory, A linear programming approach to the cutting-stock problem,Operations Research 9 (1961), 849–859.

    MATH  MathSciNet  Google Scholar 

  14. O. H. Ibarra andC. E. Kim, Fast approximation algorithms for the knapsack and sum of subset problems,Journal of the ACM 22 (1975), 463–468.

    Article  MATH  MathSciNet  Google Scholar 

  15. L. V. Kantorovtch, Mathematical methods of organizing and planning production,Management Science 6, 4 (July 1960), 366-422.

    MathSciNet  Google Scholar 

  16. S. Sahni, General techniques for combinatorial approximation,Operations Research 25, 6 (1977), 920-936.

    Article  MathSciNet  Google Scholar 

  17. B. W. Weide,Statistical Methods in Algorithm Design and Analysis, Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, Pennsylvania (August 1978); appeared as CMU Computer Science Report CMU-CS-78-142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work of this author was supported by NSF Grant MCS 70-04997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez de la Vega, W., Lueker, G.S. Bin packing can be solved within 1 + ε in linear time. Combinatorica 1, 349–355 (1981). https://doi.org/10.1007/BF02579456

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02579456

AMS subject classification (1980)

Navigation