Skip to main content
Log in

KAM theory in configuration space

  • Published:
Commentarii Mathematici Helvetici

Abstract

A new approach to the Kolmogorov-Arnold-Moser theory concerning the existence of invariant tori having prescribed frequencies is presented. It is based on the Lagrangian formalism in configuration space instead of the Hamiltonian formalism in phase space used in earlier approaches. In particular, the construction of the invariant tori avoids the composition of infinitely many coordinate transformations. The regularity results obtained are applied to invariant curves of monotone twist maps. The Lagrangian approach has been prompted by a recent study of minimal foliations for variational problems on a torus by J. Moser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anorld, V. I.,On mappings of a circle to itself, Invest. Akad. Nauk. Ser. Math.25 (1961), 21–86; Trans. Amer. Math. Soc.46 (1965), 213–284.

    Google Scholar 

  2. Arnold, V. I.,Proof of a theorem of A. N. Kolmogorov on the invariance of quasiperiodic motions under small perturbations of the Hamiltonian, Uspehi. Mat. Nauk18 (1963), 13–40; Russian Math. Surveys18 (1963), 9–36.

    MathSciNet  Google Scholar 

  3. Arnold, V. I.,Small denominators and problems of stability of motions in classical and celestial mechanics, Uspehi. Mat. Nauk18 (1963), 91–196; Russian Math. Surveys18 (1963), 85–193.

    MathSciNet  Google Scholar 

  4. Bangert, V.,Mather sets for twist maps and geodesics on tori, to appear in Dynamics Reported.

  5. Bost, J.-B.,Tores invariants des systémes dynamiques Hamiltoniens, Séminaires Bourbaki, Astérisque133–134 (1986), 113–157.

    MathSciNet  Google Scholar 

  6. Conley, C. C. andZehnder, E.,Morse type index theory for flows and periodic solutions for Hamiltonian systems, Comm. Pure Appl. Math.37 (1984), 207–253.

    MathSciNet  Google Scholar 

  7. Denzler, J.,Studium globaler Minimaler eines Variationsproblems, Diplomarbeit, ETH-Zürich, 1987.

  8. Fadell, E. andRabinowitz, P.,Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Inv. Math.45 (1978), 139–174.

    Article  MathSciNet  Google Scholar 

  9. Herman, M. R.,Sur les courbes invariantes par les difféomorphismes de l’anneau, I & II, Anstérique103–104 (1983) &144 (1986).

  10. Kolmogorov, A. N.,On the conservation of quasiperiodic motions for a small change in the Hamiltonian function, Doklad. Akad. Nauk USSR98 (1954), 527–530.

    MathSciNet  Google Scholar 

  11. Kolmogorov, A. N.,The general theory of dynamical systems and classical mechanics, Proc. Intl. Congress Math., Amsterdam 1954,—Foundations of Mechanics-, R. Abraham & J. E. Marsden, Appendix D, Benjamin 1967.

  12. Mather, J. N.,Existence of quasiperiodic orbits for twist homeomorphisms of the annulus, Topology21 (1982), 457–467.

    Article  MathSciNet  Google Scholar 

  13. Mather, J. N.,Concavity of the Lagrangian for quasi-periodic orbits, Comment. Math. Helv.57 (1983), 356–376.

    MathSciNet  Google Scholar 

  14. Mather, J. N.,Non-uniqueness of solutions of Percival’s Euler-Lagrange Equations, Comm. Math. Phys.86 (1983), 465–473.

    Article  MathSciNet  Google Scholar 

  15. Mather, J. N.,Non-existence of invariant circles, Ergodic Theory & Dynamical Systems4 (1984), 301–309.

    MathSciNet  Google Scholar 

  16. Mather, J. N.,More Denjoy minimal sets for area preserving diffeomorphisms, Comment. Math. Helv.60 (1985), 508–557.

    MathSciNet  Google Scholar 

  17. Mather, J. N.,Destruction of invariant circles, Forschungsinstitut für Mathematik, ETH-Zürich, 1987.

  18. Moser, J.,On invariant curves of area preserving mappings of the annulus, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. (1962), 1–20.

  19. Moser, J. A rapidly convergent iteration method and non-linear partial differential equations I & II, Ann Scuola Norm. Sup. Pisa20 (1966), 265–315, 499–535.

    MathSciNet  Google Scholar 

  20. Moser, J.,On the construction of almost periodic solutions for ordinary differential equations, Proc. Intl. Conf. Funct. Anal. and Rel. Top., Tokyo (1969), 60–67.

  21. Moser, J.,Minimal solutions of variational problems on a torus, Ann. Inst. Henri Poincaré, Analyse non linéaire3 (1986), 229–272.

    Google Scholar 

  22. Moser, J.,Monotone twist mappings and the calculus of variations, Ergodic Theory & Dynamical Systems6 (1986).

  23. Moser, J.,Minimal foliations on a torus, Four lectures given at the C.I.M.E. Conference in Montecatini, Italy, 1987. To appear in Lecture Notes in Mathematics in Springer Verlag.

  24. Percival, I. C.,A variational principle for invariant tori of fixed frequency, J. Phys. A12 (1979), L57.

    Article  MathSciNet  Google Scholar 

  25. Percival, I. C.,Variational principles for invariant tori and Cantori,-Nonlinear Dynamics and Beam-Beam Interaction-, M. Month & J. C. Harrera, eds., AIP Conf. Proc. No.57 (1980), 302–310.

    MathSciNet  Google Scholar 

  26. Pöschel, J. Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math.35 (1982), 653–695.

    MathSciNet  Google Scholar 

  27. Rüssmann, H.,Kleine Nenner I: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes, Nachr. Akad. Wiss. Göttingen, II. Math. Phys. Kl. (1970), 67–105.

  28. Rüssmann, H.,Kleine Nenner II: Bemerkungen zur Newtonschen Methode, Nachr. Akad. Wiss. Göttingen, II. Math. Phys. Kl. (1972), 1–10.

  29. Rüssmann, H.,On optimal estimates for the solutions of linear partial differential equations, with first order coefficients on the torus,—Dynamical Systems, Theory and Applications— J. Moser, ed., pp. 598–624, LNP 38, Springer-Verlag, New York, 1975.

    Google Scholar 

  30. Salamon, D.,The Kolmogorov-Arnold-Moser theorem, Preprint, Forschungsinstitut für Mathematik, ETH-Zürich, 1986.

  31. Zehnder, E.,Generalized implicit function theorems with applications to small divisor problems I & II, Comm. Pure Appl. Math.28 (1975), 91–140;29 (1976), 49–113.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research has been supported by the Nuffields Foundation under grant SCI/180/173/G and by the Stiftung Volkswagenwerk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salamon, D., Zehnder, E. KAM theory in configuration space. Commentarii Mathematici Helvetici 64, 84–132 (1989). https://doi.org/10.1007/BF02564665

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02564665

Keywords

Navigation